Explanation:
mass of earth (m1)=5.97×10^24
mass of moon (m2)=7.35×10^22
distance between their center (d)= 3.84×10^8
G=6.67×10^-11
now,
gravitational force =(F)= G(m1×m2)/d²
- 6.67×10^-11(5.97×10^24×7.35×10^22)/(3.84×10^8)
- 19.84×10^19
<h3>stay safe healthy and happy...</h3>
Answer:
b
Explanation:
Mass number consist of number of proton and neutron in an atom
<span>Answer:
First we need to find the acceleration.
torque on cylinder Ď„ = T * r where T is the string tension;
T = m(g - a) where a is the acceleration of the cylinder. Then
Ď„ = m(g - a)r
But also τ = Iα. For a solid cylinder, I = ½mr²,
and if the string doesn't slip, then α = a / r, so
τ = ½mr² * a/r = ½mra.
Since Ď„ = Ď„, we have
m(g - a)r = ½mra → m, r cancel, leaving
g - a = ½a
g = 3a/2
a = 2g/3 where g, of course, is gravitational acceleration.
We know that v(t) = a*t, so for our cylinder
v(t) = 2gt / 3 â—„ linear velocity
and ω = v(t) / r = 2gt / 3r ◄ angular velocity</span>
Answer:
It is a copy of an object and appears to be coming from behind the mirror.
Explanation:
- The plane mirror has a flat surface, where of its surface is polished to reflect the light.
- The plane mirror shows the image as the same size of the object.
- The image produced by the plane mirror is virtual and erect.
- But the orientation of the image formed changes the left and right.
- Hence,the image appears to be coming from behind the mirror.
In triangle ABC , using Pythagorean theorem
BC = sqrt(AB² + AC²)
r = sqrt(y² + x²) eq-1
taking derivative both side relative to "t"
dr/dt = (1/(2 sqrt(y² + x²) ) ) (2 y (dy/dt) + 2 x (dx/dt))
dr/dt = (1/(2 sqrt(0.5² + 0.5²) ) ) (2 (0.5) (dy/dt) + 2 (0.5) (dx/dt))
dr/dt = (1/(2 sqrt(0.5² + 0.5²) ) ) ( v₁ + v₂)
15= (1/(2 sqrt(0.5² + 0.5²) ) ) ( - 30 + v₂)
v₂ = 51.2 m/s