Answer:
1- b: 2- a : 3- c : 4- d
Explanation:
it starts 2 move away from strting point, then no motion, then moves toward the start, the slows up.
Let the rise in temperature be 
The expansion in length due to change in temperature is given by the expression lαΔt , where l is the length, α is the coefficient of linear expansion, Δt is the change in temperature.
Here l = 93 m, α =
, and Δt = 
So expansion in length = 93*
*5 = 0.007905 m = 
So order of magnitude in change in length = -3
The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving electrons form a electron <u>negative</u> blanket that binds the atomic <u>positive</u> nuclei together, forming a metallic bond.
So the answers are <u>{ Negative }</u> and <u>{ Positive }.</u>
Please vote Brainliest (:
Radio waves. Giant satellite-dish antennas pick up long-wavelength, high-frequency radio waves. ...
Microwaves. Because cosmic microwaves can't get through the whole of Earth's atmosphere, we have to study them from space. ...
Infrared. ...
Visible light. ...
Ultraviolet light. ...
X rays. ...
Gamma rays.
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.