1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
3 years ago
13

How is work involved in stopping a car?

Physics
2 answers:
horrorfan [7]3 years ago
8 0

................................

vichka [17]3 years ago
5 0
You have to move your foot to stop the car so I guess that would be considered work by moving your foot
You might be interested in
A point charge is placed at each corner of square with side leanth a. The charges all have same magnitude q. My question, What i
nexus9112 [7]

Answer:

 E = k q / a²   (1.3535) (- i ^ + j ^)

  E = k q / a²  1.914  ,      θ’= 135

Explanation:

For this exercise we will use Newton's second law where we must add as vectors

        E_total = E₁₂ i ^ + E₁₄ j ^ + E₁₃

Let's look for the value of each term

On the x axis

       E₁₂ = k q / a²

On the y axis

       E₁₄ = k q / a²

For the charge in the opposite corner we look for the distance

        d = √ (a² + a²) = a √2

let's look for the field

      E₁₃ = k q / d²

      E₁₃ = k q / 2a²

let's use trigonometry to find the two components of this field

       cos 45 = E₁₃ₓ / E₁₃

       E₁₃ₓ = E₁₃ cos 45

       

       sin 45 = E_{13y} / E₁₃

       E_{13y} = E₁₃ sin 45

       E₁₃ₓ = k q / 2a²  cos 45

       E_{13y} = k q / 2a²  sin 45

let's find each component of the electric field

X axis

      Eₓ = -E₁₂ - E₁₃ₓ

      Eₓ = - k q / a² - k q / 2a² cos 45

      Eₓ = - k q / a² (1 + cos 45/2)

      cos 45 = sin 45 = 0.707

      Eₓ = - k q / a²   (1 + 0.707 / 2)

      Eₓ = - k q / a²    (1.3535)

Y axis  

      E_y = E₁₄ + E_{13y}

       E_y = k q / a² + k q / 2a²     sin 45

       E_y = k q / a² (1 + sin 45/2)

       E_y = k q / a²       (1.3535)

we can give the results in two ways

       E = k q / a²   (1.3535) (- i ^ + j ^)

In modulus and angle form, let's use Pythagoras' theorem for the angle

       E = √ (Eₓ² + E_y²)

        E = k q / a²    1.3535 √2

        E = k q / a²     1.914

we use trigonometry for the angle

        tan θ = E_y / Eₓ

         θ = tan⁻¹  (E_y / Eₓ)

         θ = tan⁻¹ (1 / -1)

         θ = 45

in the third quadrant, if we measure the angle of the positive side of the x-axis

           θ‘= 90 + 45

           θ’= 135

4 0
3 years ago
The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
OlgaM077 [116]

Answer:

The spring constant = 104.82 N/m

The angular velocity of the bar when θ = 32° is 1.70 rad/s

Explanation:

From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:

T_1+V_1=T_2+V_2

0+0 = \frac{1}{2} k \delta^2 - \frac{mg (a+b) sin \ \theta }{2}  \\ \\ k \delta^2 = mg (a+b) sin \ \theta \\ \\ k = \frac{mg(a+b) sin \ \theta }{\delta^2}

Also;

\delta = \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2}

Thus;

k = \frac{mg(a+b) sin \ \theta }{( \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2})^2}

where;

\delta = deflection in the spring

k = spring constant

b = remaining length in the rod

m = mass of the slender bar

g = acceleration due to gravity

k = \frac{(1.53*9.8)(0.6+0.2) sin \ 64 }{( \sqrt{0.6^2 +0.6^2 +2*0.6*0.6 sin \ 64} - \sqrt{0.6^2 +0.6^2})^2}

k = 104.82\ \  N/m

Thus; the spring constant = 104.82 N/m

b

The angular velocity can be calculated by also using the conservation of energy;

T_1+V_1 = T_3 +V_3  \\ \\ 0+0 = \frac{1}{2}I_o \omega_3^2+\frac{1}{2}k \delta^2 - \frac{mg(a+b)sin \theta }{2} \\ \\ \frac{1}{2} \frac{m(a+b)^2}{3}  \omega_3^2 +  \frac{1}{2} k \delta^2 - \frac{mg(a+b)sin \ \theta }{2} =0

\frac{m(a+b)^2}{3} \omega_3^2  + k(\sqrt{h^2+a^2+2ah sin \theta } - \sqrt{h^2+a^2})^2 - mg(a+b)sin \theta = 0

\frac{1.53(0.6+0.6)^2}{3} \omega_3^2  + 104.82(\sqrt{0.6^2+0.6^2+2(0.6*0.6) sin 32 } - \sqrt{0.6^2+0.6^2})^2 - (1.53*9.81)(0.6+0.2)sin \ 32 = 0

0.7344 \omega_3^2 = 2.128

\omega _3 = \sqrt{\frac{2.128}{0.7344} }

\omega _3 =1.70 \ rad/s

Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s

7 0
3 years ago
Que es la friccion <br> Cual es la primera ley de newton
lidiya [134]

Answer:

huh?...................

5 0
3 years ago
HOW FAR DOES A UNICYCLE TRAVEL AT A SPEED OF 20 M/S FOR 15 SECONDS?​
astra-53 [7]

Given:-

  • Speed of the unicycle = 20 m/s
  • Time taken = 15 s

To Find: Distance travelled by the unicycle.

We know,

s = vt

where,

  • s = Distance travelled,
  • v = Speed &
  • t = Time taken.

Therefore,

s = (20 m/s)(15 s)

→ s = (20 m)(15)

→ s = 300 m (Ans.)

8 0
3 years ago
How death rate helps in changing population​
lapo4ka [179]
Both the birth and death rate are expressed per 1000 of the population.
6 0
3 years ago
Other questions:
  • How do animals release water vapor?
    6·1 answer
  • Please help!!
    12·1 answer
  • Two long parallel wires carry currents of 3.35 A and 6.99 A . The magnitude of the force per unit length acting on each wire is
    15·2 answers
  • Janet jumps off a high diving platform with a horizontal velocity of 2.8 meters per second in lands in the_________.
    15·1 answer
  • When the moving sidewalk at the airport is broken, as it often seems to be, it takes you 44 s to walk from your gate to baggage
    13·1 answer
  • 25000 seconds is how many days?
    9·2 answers
  • Which factor does not affect the resistance of a material?
    8·2 answers
  • How do you find average speed on a graph
    9·1 answer
  • whirl a rock at the end of a string and it follows a circular path. if the string breaks, the tendency of the rock is to
    13·1 answer
  • Question 5 of 5<br> What do the arrows in the photograph represent?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!