Answer:
29.2 ft/s
Explanation:
The distance of the light's projection on the wall
y = 13 tan θ
where θ is the light's angle from perpendicular to the wall.
The light completes one rotation every 3 seconds, that is, 2π in 3 seconds,
Angular speed = w = (2π/3)
w = (θ/t)
θ = wt = (2πt/3)
(dθ/dt) = (2π/3)
y = 13 tan θ
(dy/dt) = 13 sec² θ (dθ/dt)
(dy/dt) = 13 sec² θ (2π/3)
(dy/dt) = (26π/3) sec² θ
when θ = 15°
(dy/dt) = (26π/3) sec² (15°)
(dy/dt) = 29.2 ft/s
Answer:
Potential
Explanation:
The most accurate term is Electrostatic potential energy
It's named like this because the force between charges or electrons is called electrostatic force .
-- The student's distance traveled is 200 meters.
-- The student's displacement is 141 meters Northeast.
Answer:
The minimum thickness of the film and the wavelength of the light in air are
and 371 nm.
Explanation:
Given that,
Refractive index of soap= 1.34
Refractive index of glass= 1.55
Wavelength = 642 nm
(I). We need to calculate the minimum thickness
Using formula of thickness

Where, m = 0 for constrictive
Put the value into the formula


(II). We need to calculate the wavelength
Using formula of wavelength

Where, m = 1
Put the value into the formula


Hence, The minimum thickness of the film and the wavelength of the light in air are
and 371 nm.