Answer:
It depends upon the mass of the particles also. Assuming equal mass, then the slower moving particle gains some energy, and the faster-moving particle loses energy. However, if the slower moving particle had greater mass, it could transfer energy to the faster-moving particle.
Explanation:
Hope I could help! :)
Answer:
- 13,150.6kJ
Explanation:
CH4 + 2 O2 ------> CO2 + 2 H2O ΔH= – 890 kJ
The ΔH is enthalpy change of combustion , which is the heat is either absorbed or released by the combustion of one mole of a substance.
ΔH=−890 kJ/mol (released in the combustion of one mole of methane)
using the molar mass (in grams )of methane to get moles of sample
(237g × 1 mole of CH4)/16.04g=14.776 moles of CH4
Since 1 mole produces 890 kJ of heat upon combustion, then 14.776 moles will produce
ΔH = 14.776moles of CH4 × 890kJ/1mole of CH4
=13,150.6kJ
Therefore ΔH = - 13,150.6kJ
Two subatomic particles that are located in the nucleus of an atom are Protons and Neutrons.
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M