Answer:
84.82N/C.
Explanation:
The x-components of the electric field cancel; therefore, we only care about the y-components.
The y-component of the differential electric field at the center is
.
Now, let us call
the charge per unit length, then we know that
;
therefore,


Integrating

![$E = \frac{k \lambda }{R}*[-cos(\pi )+cos(0) ]$](https://tex.z-dn.net/?f=%24E%20%3D%20%5Cfrac%7Bk%20%5Clambda%20%20%20%7D%7BR%7D%2A%5B-cos%28%5Cpi%20%29%2Bcos%280%29%20%5D%24)

Now, we know that


and the radius of the semicircle is

therefore,


Answer:
the false statements
Explanation:
Radio waves, Tw or microndasm are produced by the man with different instruments, so to detect them we use an artifact that detects electrical waves
From the false statements
Answer:
electrons
Explanation:
The magnitude of the electric field outside an electrically charged sphere is given by the equation

where
k is the Coulomb's constant
Q is the charge stored on the sphere
r is the distance (from the centre of the sphere) at which the field is calculated
In this problem, the cloud is assumed to be a charged sphere, so we have:
is the maximum electric field strength tolerated by the air before breakdown occurs
is the radius of the sphere
Re-arranging the equation for Q, we find the maximum charge that can be stored on the cloud:

Assuming that the cloud is negatively charged, then

And since the charge of one electron is

The number of excess electrons on the cloud is

1). one disadvantage as using it is because it covers far less space. this would make much more blind spots. 2. the advantage of them is that they don't lie about the distances. the current convex mirrors we have in out cars right now, is that the imagine might look father or closer than they appear, which can be troubling at times.
plan mirrors are flat, car mirrors are convex.