Answer:
<em> The distance required = 16.97 cm</em>
Explanation:
Hook's Law
From Hook's law, the potential energy stored in a stretched spring
E = 1/2ke² ......................... Equation 1
making e the subject of the equation,
e = √(2E/k)........................ Equation 2
Where E = potential Energy of the stretched spring, k = elastic constant of the spring, e = extension.
Given: k = 450 N/m, e = 12 cm = 0.12 m.
E = 1/2(450)(0.12)²
E = 225(0.12)²
E = 3.24 J.
When the potential energy is doubled,
I.e E = 2×3.24
E = 6.48 J.
Substituting into equation 2,
e = √(2×6.48/450)
e = √0.0288
e = 0.1697 m
<em>e = 16.97 cm</em>
<em>Thus the distance required = 16.97 cm</em>
Answer:
Explanation:
The path length difference = extra distance traveled
The destructive interference condition is:
where m =0,1, 2,3........
So, ←
⇒ λ = 2Δd = 2×10 = 20
Feet and inches or millimeters or centimeters or meters or miles or kilometers
Answer:
0.06 N
1.08 m/s
Explanation:
m = mass of the fan cart = 0.250 kg
a = acceleration of the fan cart = 24 cm/s² = 0.24 m/s²
F = Net force on the cart
Net force on the cart is given as
F = ma
F = (0.250) (0.24)
F = 0.06 N
v₀ = initial velocity of the cart = 0 m/s
v = final velocity of the cart
t = time interval = 4.5 s
Using the equation
v = v₀ + a t
v = 0 + (0.24) (4.5)
v = 1.08 m/s