The correct answer is:-
alternating.
Answer:
Greatest gravitational energy is at "C".
The planet has to do work "against" the field to get to "C".
Also, if m v R (angular momentum) is constant then as R increases v must decrease for this term to be constant and KE = 1/2 M v^2 must decrease also to get to point C.
Answer:
ε = 2 V/cm
Explanation:
To calculate the mobility inside this bar, we just need to apply the expression that let us determine the mobility. This expression is the following:
ε = ΔV / L
Where:
ε: Hole mobility inside the bar
ΔV: voltage applied in the bar
L: Length of the bar
We already have the voltage and the length so replacing in the above expression we have:
ε = 2 V / 1 cm
<h2>
ε = 2 V/cm</h2><h2>
</h2>
The data of the speed can be used for further calculations, but in this part its not necessary.
Hope this helps
Answer:
a) θ₁ = 23.14 °
, b) θ₂ = 51.81 °
Explanation:
An address network is described by the expression
d sin θ = m λ
Where is the distance between lines, λ is the wavelength and m is the order of the spectrum
The distance between one lines, we can find used a rule of proportions
d = 1/600
d = 1.67 10⁻³ mm
d = 1-67 10⁻³ m
Let's calculate the angle
sin θ = m λ / d
θ = sin⁻¹ (m λ / d)
First order
θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₁ = sin⁻¹ (3.93 10⁻¹)
θ₁ = 23.14 °
Second order
θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₂ = sin⁻¹ (0.786)
θ₂ = 51.81 °