Answer:
0.18× 10²³ molecules
Explanation:
Given data:
Mass of copper hydroxide = 3.30 g
Number of molecules = ?
Solution:
Number of moles = mass/molar mass
Number of moles = 3.30 g/97.56 g/mol
Number of moles = 0.03 mol
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
0.03 mol × 6.022 × 10²³ molecules / 1mol
0.18× 10²³ molecules
Explanation:
Formula to calculate osmotic pressure is as follows.
Osmotic pressure = concentration × gas constant × temperature( in K)
Temperature =
= (25 + 273) K
= 298.15 K
Osmotic pressure = 531 mm Hg or 0.698 atm (as 1 mm Hg = 0.00131)
Putting the given values into the above formula as follows.
0.698 = 
C = 0.0285
This also means that,
= 0.0285
So, moles = 0.0285 × volume (in L)
= 0.0285 × 0.100
= 
Now, let us assume that mass of
= x grams
And, mass of
= (1.00 - x)
So, moles of
=
Now, moles of
=
=
= x = 0.346
Therefore, we can conclude that amount of
present is 0.346 g and amount of
present is (1 - 0.346) g = 0.654 g.
Answer: Avogrado's Constant
Explanation:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant. The concept of the mole can be used to convert between mass and number of particles.
Answer:
i got you dawg just gimme one sec i'll get to you fr g
Explanation:
Answer:
I think the answer is D.
Explanation:
Because if it is unsaturated then it can dissolve more solutes.