Out of the 3 types of heat transfer, this scenario would be most likely to be an example of convection.
Convection is where the transferring of heat is resulted through the movements of fluid, but in this case it is air. What happens is that when a part of the whole mass of air is heated, the hotter air rises and the cooler air descends and takes place of the hotter air before it was heated. Then, the cooler air becomes hotter and the hotter air before becomes the cooler air of both, which then results to the repeat of the exchange of places. This creates a motion until the whole mass has achieved mutual temperature, the heat source has stopped or extinguished, or there is a shift of temperature.
If you have (1 x 10⁹) cubic meters of volume, and 1/2 gram of mass
in each cubic meter, then you have
(1/2 x 10⁹) grams = (5 x 10⁸) grams = (5 x 10⁵) kilograms of mass .
On Earth, that mass weighs 4,900,000 newtons .
(about 1,102,300 pounds)
(about 551 tons)
Working of a Half wave rectifier
The diode is connected in series with the secondary of the transformer and the load resistance RL. The primary of the transformer is being connected to the ac supply mains. The ac voltage across the secondary winding changes polarities after every half cycle of the input wave.
Answer:
the velocity is 10 m/s
Explanation:
Using the expression for kinetic energy we have:
![Ek=\frac{1}{2} *m*v^{2} \\\\Ek=100J\\m=2kg\\v=\sqrt{(2*100/2)}\\ v=10[m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5C%5C%5CEk%3D100J%5C%5Cm%3D2kg%5C%5Cv%3D%5Csqrt%7B%282%2A100%2F2%29%7D%5C%5C%20v%3D10%5Bm%2Fs%5D)
Answer:
the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
Explanation:
Given the data in the question;
we make use of the following expression;
hall Voltage VH = IB / ned
where I = 2.25 A
B = 0.685 T
d = 0.107 mm = 0.107 × 10⁻³ m
e = 1.602×10⁻¹⁹ C
VH = 2.59 mV = 2.59 × 10⁻³ volt
n is the electron density
so from the form; VH = IB / ned
VHned = IB
n = IB / VHed
so we substitute
n = (2.25 × 0.685) / ( 2.59 × 10⁻³ × 1.602×10⁻¹⁹ × 0.107 × 10⁻³ )
n = 1.54125 / 4.4396226 × 10⁻²⁶
n = 3.4716 × 10²⁵ m⁻³
Therefore, the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³