Answer:
The escalator does more work and the elevator has a greater power output.
Explanation:
The escalator does more work on the person because it is carrying them up. It also gives the person a chance to walk up the escalator making it a little more challenging than using just an elevator. The elevator has a greater power output because it can transport a person from one floor to another in just 10 seconds where as the escalator can do it in 15.
Hope this helps!
Answer:
2.92 m
Explanation:
As we know, frequency × Wavelength = Speed of light
so here frequency of 102.7 MHz can be written as 102.7× 10⁶ Hz..
So Lambda (wavelength) = 3×10⁸/ 102.7 × 10⁶ which gives 2.92 metres or 2.92 × 10¹⁰ Å
Answer:
12.5 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Height (h) = 8 m
Final velocity (v) at 8 m above the lowest point =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
The velocity of the roller coaster at 8 m above the lowest point can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 8)
v² = 0 + 156.8
v² = 156.8
Take the square root of both side
v = √156.8
v = 12.5 m/s
Therefore, the velocity of the roller coaster at 8 m above the lowest point is 12.5 m/s.
The first law of thermodynamics is expresses by
D. ΔU=Q-W
which means change in internal energy of system = Heat added to system minus work done by the system
All are expressed in Joules.
This law is based on principle of conservation of energy.
Answer:
0.739
Explanation:
If we treat the four tire as single body then
W ( weight of the tyre ) = mass × acceleration due to gravity (g)
the body has a tangential acceleration = dv/dt = 5.22 m/s², also the body has centripetal acceleration to the center = v² / r
where v is speed 25.6 m/s and r is the radius of the circle
centripetal acceleration = (25.6 m/s)² / 130 = 5.041 m/s²
net acceleration of the body = √ (tangential acceleration² + centripetal acceleration²) = √ (5.22² + 5.041²) = 7.2567 m/s²
coefficient of static friction between the tires and the road = frictional force / force of normal
frictional force = m × net acceleration / m×g
where force of normal = weight of the body in opposite direction
coefficient of static friction = (7.2567 × m) / (9.81 × m)
coefficient of static friction = 0.739