Nitrogen oxides play a critical role in photochemical smog. They give the smog its yellowish-brown hue. Indoor residential appliances like gas stoves and gas or wood heaters can be significant emitters of nitrogen oxides in poorly ventilated environments.
- Nitrogen dioxide (NO₂), ozone (O₃), peroxyacetyl nitrate (PAN), and chemical compounds with the -CHO group are the main harmful elements of photochemical smog (aldehydes). If present in high enough amounts, PAN and aldehydes can harm plants and irritate the eyes.
- The greatest sources of emissions are power plants, heavy construction equipment driven by diesel, other moveable engines, and industrial boilers. Cars, trucks, and buses are next in line.
Therefore , on conclusion i.e. two gases with molecules consisting of nitrogen and oxygen atoms are nitric oxide (NO) and nitrogen dioxide (NO₂). These nitrogen oxides play a part in the development of smog and acid rain, adding to the issue of air pollution.
To know more about photochemical smog
brainly.com/question/15635778
#SPJ1
Well I think B hope this helps
Answer: <u>elastically</u> deformed or <u>non-permanently</u> deformed
Explanation:
According to classical mechanics, there are two types of deformations:
-Plastic deformation (also called irreversible or permanent deformation), in which the material does not return to its original form after removing the applied force, therefore it is said that the material was permanently deformed.
This is because the material undergoes irreversible thermodynamic changes while it is subjected to the applied forces.
-Elastic deformation (also called reversible or non-permanent deformation), in which the material returns to its original shape after removing the applied force that caused the deformation.
In this case t<u>he material also undergoes thermodynamic changes, but these are reversible, causing an increase in its internal energy by transforming it into elastic potential energy.</u>
<u />
Therefore, the situation described in the question is related to elastic deformation.
Probably because of the drag coefficient and the density of the liquid.