Answer:
100m
Explanation:
100m
s=ut+1/2at^2
s= unknown, u=0, a=2, t=10
s=0*10+1/2(2)(10)^2
s=1/2(2)(100)
s=1(100)
displacement = 100 meters
Answer:
A person climbs a set of stairs
Explanation:
Potential energy is said to be possessed by an object due to its position. As the height from the ground level increase, the potential energy increases. It is calculated by the below formula as :
P = mgh
Out of the given options, the option that illustrates an increase in potential energy is option (b) i.e. a person climbs a set of stairs. As he steps one stair, its position from ground increases. It means its potential energy increases.
Answer:
35.6 N
Explanation:
We can consider only the forces acting along the horizontal direction to solve the problem.
There are two forces acting along the horizontal direction:
- The horizontal component of the pushing force, which is given by

with 
- The frictional force, whose magnitude is

where
, m=8.2 kg and g=9.8 m/s^2.
The two forces have opposite directions (because the frictional force is always opposite to the motion), and their resultant must be zero, because the suitcase is moving with constant velocity (which means acceleration equals zero, so according to Newton's second law: F=ma, the net force is zero). So we can write:

Answer:
Explanation:
Kinetic energy of the block
= 1/2 m v²
= .5 x 3 x 4 x 4
= 24 J
Negative work of - 24 J is required to be done on this object to bring it to rest.
magnitude of acceleration due to frictional force
= force / mass
2 / 3
= 0 .67 m /s²
Let the body slide by distance d before coming to rest so work done by force = Kinetic energy
= 2 x d = 24
d = 12 m