Answer:
The Bohr model and all of its successors describe the properties of atomic electrons in terms of a set of allowed (possible) values. Atoms absorb or emit radiation only when the electrons abruptly jump between allowed, or stationary, states. Direct experimental evidence for the existence of such discrete states was obtained (1914) by the German-born physicists James Franck and Gustav Hertz.
Explanation:
It’s basically that’s any system that’s closed to all transfers of matter and energy the mass of the system has to remain constant over time because they can’t change meaning you can’t add or remove from it
Answer:
Br - C ≡ N
Explanation:
To draw the Lewis line-bond structure we need to bear in mind the octet rule, which states that in order to gain stability each <em>atom tends to share electrons until it has 8 electrons in its valence shell</em>.
- C has 4 e⁻ in its valence shell so it will form 4 covalent bonds.
- Br has 7 e⁻ in its valence shell so it will form 1 covalent bond.
- N has 5 e⁻ in its valence shell so it will form 3 covalent bonds.
The most stable structure that respects these premises is:
Br - C ≡ N
It does not have any H atom.
Answer is: both reactions
are exothermic.
<span>
In exothermic reactions, heat is released and enthalpy of reaction is less than
zero (as it show second chemical reaction).
According to Le Chatelier's principle when the reaction
is exothermic heat is included as a product (as it show first
chemical reaction).</span>