The frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.
<h3>What is a frequency?</h3>
The number of waves that travel through a particular point in a given length of time is described by frequency. So, if a wave takes half a second to pass, the frequency is 2 per second.
Given that the energy of the photon is 4.56 x 10⁻¹⁹ J. Therefore, the frequency of the photon can be written as,

Hence, the frequency of a photon with an energy of 4.56 x 10⁻¹⁹ J is 6.88×10¹⁴ s⁻¹.
Learn more about Frequency:
brainly.com/question/5102661
#SPJ4
Answer: Liquid
“A substance will take on the shape of an open container if it is a Liquid. Explanation: The major state of matter are solid, liquid and gas. Liquid usually have a definite volume.”
Answer:
I_weight = M L²
this value is much larger and with it it is easier to restore balance.I
Explanation:
When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by
v = w r
For man to maintain equilibrium needs the total moment to be zero
∑τ = I α
S τ = 0
The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.
Therefore the moment of the masses and the open is the one that must be zero.
If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope
I = ⅓ m L² / 4
As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.
If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is
I_weight = M L²
this value is much larger and with it it is easier to restore balance.
Answer:
163.33 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 40 Kg
Height (h) = 25 m
Time (t) = 1 min
Power (P) =..?
Next, we shall determine the energy. This can be obtained as follow:
Mass (m) = 40 Kg
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 40 × 9.8 × 255
E = 9800 J
Finally, we shall determine the power. This can be obtained as illustrated below:
Time (t) = 1 min = 60 s
Energy (E) = 9800 J
Power (P) =?
P = E/t
P = 9800 / 60
P = 163.33 Watts
Thus, the power required is 163.33 Watts