Answer:
0.67 seconds
8.576 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²

Time taken by the stunt woman to drop to the saddle is 0.67 seconds which is the time she will stay in the air.
Speed of the horse = 12.8 m/s
Distance = Speed × Time
⇒Distance = 12.8×0.67
⇒Distance = 8.576 m
Hence, the distance between the horse and stunt woman should be 8.576 m when she jumps.
Answer:
![[F]=[MLT^{-2}]](https://tex.z-dn.net/?f=%5BF%5D%3D%5BMLT%5E%7B-2%7D%5D)
Explanation:
Newton’s second law states that the acceleration a of an object is proportional to the force F acting on it is inversely proportional to its mass m. The mathematical expression for the second law of motion is given by :
F = m × a
F is the applied force
m is the mass of the object
a is the acceleration due to gravity
We need to find the dimensions of force. The dimension of force m and a are as follows :
![[m]=[M]](https://tex.z-dn.net/?f=%5Bm%5D%3D%5BM%5D)
![[a]=[LT^{-2}]](https://tex.z-dn.net/?f=%5Ba%5D%3D%5BLT%5E%7B-2%7D%5D)
So, the dimension of force F is,
. Hence, this is the required solution.
Gravity is an attractive force that works to pull objects together. If 2 objects are close the gravitational pull will be stronger
Mass and distance determine gravity. The farther two things are away from each other, the weaker the gravitational forces are, the less mass an object has the less gravitational force it exerts
The moment of inertia is 
Explanation:
The total moment of inertia of the system is the sum of the moment of inertia of the rod + the moment of inertia of the two balls.
The moment of inertia of the rod about its centre is given by

where
M = 24 kg is the mass of the rod
L = 0.96 m is the length of the rod
Substituting,

The moment of inertia of one ball is given by

where
m = 50 kg is the mass of the ball
is the distance of each ball from the axis of rotation
So we have

Therefore, the total moment of inertia of the system is

Learn more about inertia:
brainly.com/question/2286502
brainly.com/question/691705
#LearnwithBrainly
Of the following...?? Is there more to this question? :)