Answer:
Point motion will eventually stops due to action of g exactly perpendicular...
Explanation:
If ignoring the air resistance, the magnitude of gravitational acceleration is already strong enough to stops the acceleration. As we know that, the spring constant of a bungee spring cord will be F = -k/x, where x is the stretched length and k is the spring constant of bungee cord. If F = ma = w = mg, the g = -m k/x. Now we can clearly see that the value of g remains constant due to the fluctuating length of the cord as the motion progresses back and forth in SHM say from x1 to x2 and x2 to x1.
This implies that stopping distance and impact force grow as a function of speed. The best ways to improve manoeuvrability and lessen crash severity are to drive at an appropriate pace and to slow down as soon as you spot dangers in front of you.
Keep in mind that stopping distance increases with speed; at 50 mph, it is four times longer than at 25 mph, and at 75 mph, the force of impact is nine times greater.
<h3>What is the impact of speed on kinetic energy ?</h3>
When your car expends or absorbs energy to speed up or slow down, you may feel a pull or a jolt, called impulse. Impulse increases as the energy or force increases, and increases as the duration of the force decreases. You'll feel a harder jolt if you speed up or slow down suddenly.
- Consider: coming to a stop from 60 mph in ten seconds doesn't hurt you or your vehicle because the force of this event is spread out over a long time. But if you hit a wall and come to a stop in just half a second, you'll feel twenty times the impulse, causing severe damage.
Learn more about Kinetic energy here:
brainly.com/question/25959744
#SPJ4
Answer:
Explanation:
The mass of the car doesn't matter because On a flat curve the mass of the car does not affect the speed at which it can stay on the curve. You would need the mass if you were solving the the centripetal force acting on the car, but not the acceleration.
and filling in
and we need 2 significant digits in our answer. That means that
a = 1.5 m/sec²