Answer:
1) Option c) is correct ie., 5 real and o non-real
2) Option b) is correct ie., (4,
,
, 2,2)
Step-by-step explanation:
Given polynomial function is ![f(x)=x^5-3x^3-2](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E5-3x%5E3-2)
To find zeros equate f(x) to zero ie., ![f(x)=0](https://tex.z-dn.net/?f=f%28x%29%3D0)
![x^5-3x^3-2=0](https://tex.z-dn.net/?f=x%5E5-3x%5E3-2%3D0)
By synthetic division
| 1 0 -3 0 -2
-1 | 0 -1 1 2 2
|_________________
1 -1 -2 2 0
Therefore x=-1 is a zero
![x^3-x^2-2x+2=0](https://tex.z-dn.net/?f=x%5E3-x%5E2-2x%2B2%3D0)
| 1 -1 -2 2
1 | 0 1 0 2
|___________________
1 0 -2 0
x=1 is the zero
![x^2 -2 =0](https://tex.z-dn.net/?f=x%5E2%20-2%20%3D0)
![x=\pm\sqrt{2}](https://tex.z-dn.net/?f=x%3D%5Cpm%5Csqrt%7B2%7D)
and
Option c) is correct ie., 5 real and o non-real
2) Given polynomial function is ![f(x)=(x-4)(2x-1)^2(x-2)^2](https://tex.z-dn.net/?f=f%28x%29%3D%28x-4%29%282x-1%29%5E2%28x-2%29%5E2)
To find zeros equate f(x) to zero ie., ![f(x)=0](https://tex.z-dn.net/?f=f%28x%29%3D0)
![(x-4)(2x-1)^2(x-2)^2=0](https://tex.z-dn.net/?f=%28x-4%29%282x-1%29%5E2%28x-2%29%5E2%3D0)
(or)
or ![(x-2)^2=0](https://tex.z-dn.net/?f=%28x-2%29%5E2%3D0)
Therefore x=4,
of multiplicity of 2 and x=2 multiplicity of 2
Option b) is correct ie., (4,
,
, 2,2)