Answer:a)45cos40 b)45sin40 c) 2.95 d)102
Explanation:
a) 
b) 
c) Since air resistance is negligible, the only force acting on the golf ball is gravity. Thus, its vertical acceleration is -<em>g</em>. We know the final velocity must be 0 m/s, because this will be when the golf ball reaches the maximum height and starts to change direction (it falls back to the ground). We also know initial velocity in the vertical direction (see part b). Thus, we can use this equation:
.

d) The horizontal distance traveled is dependent on (1) how long the ball is in the air and (2) what the horizontal velocity is. (1) was found in part c, and (2) was found in part a.

<span>Answer:
Total kinetic energy at the bottom = 0.5(1+0.4) mv^2 = mgh
V^2 = 7*9.8/0.7
V = 9.9m/s
ω = V/r = 9.9/1.7 = 5.8rad/s
Answer c. 5.8 rad/s</span>
Initial volume of the gas (V1) = 10 inches^3
Initial pressure (P1) = 5 psi
Final pressure after compression of the gas (P1) = 10 psi
Let us assume the final volume of the gas (V2) = x
According to Boyle's Gas law, the pressure and volume of a gas remains constant under ideal condition. Then
P1V1= P2V2
5 * 10 = 10 * x
50 = 10x
x = 50/10
= 5 cubic inches
So the volume of the gas after it was compressed was 5 cubic inches. I hope the procedure is clear enough for you to understand.
Answer:
24 N
Explanation:
= mass of the cube = 
Consider the three cubes together as one.
= mass of the three cubes together = 
= acceleration of the combination = 2 ms⁻²
= Force applied on the combination
Using Newton's second law

= Force by the left cube on the middle cube
Consider the forces acting on left cube, from the force diagram, we have

We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.