The so-called "velocity-time" graph is actually a "speed-time" graph. At any point
on it, the 'x'-coordinate is a time, and the 'y'-coordinate is the speed at that time.
'Velocity' is a speed AND a direction. Without a direction, you do not have a velocity,
and these graphs never show the direction of the motion. It seems to me that it would be
pretty tough to draw a graph that shows the direction of motion at every instant of time,
so my take is that you'll never see a true "velocity-time" graph.
At best, it would need a second line on it, whose 'y'-coordinate referred to a second
axis, calibrated in angle and representing the 'bearing' or 'heading' of the motion at
each instant. The graph of uniform circular motion, for example, would have a straight
horizontal line for speed, and a 'sawtooth' wave for direction.
Answer:
albert einsteinssssssssssssssssssssssssss
Explanation:
Who was the proponent of the Neo-classicism?
a) Claude Debussy
b) Joseph Maurice Ravel
c) Igor Stravinsky
d) Arnold Schoenberg
a) 1.57 m/s
The sock spins once every 2.0 seconds, so its period is
T = 2.0 s
Therefore, the angular velocity of the sock is

The linear speed of the sock is given by

where
is the angular velocity
r = 0.50 m is the radius of the circular path of the sock
Substituting, we find:

B) Faster
In this case, the drum is twice as wide, so the new radius of the circular path of the sock is twice the previous one:

At the same time, the drum spins at the same frequency as before, therefore the angular frequency as not changed:

Therefore, the new linear speed would be:

And substituting,

So, we see that the linear speed has doubled.