Answer:
O3 => CLO + O2
Explanation:
ozone gas yields one Chlorine Monoxide gas, and two Oxygen gas. i forgot how to explain it well, but I know how to do it and will help in the future if needed :)
Answer:
when rutherford performed his experiment, only 1 in 20,000 alpha particles bounced straight back or were deflected greatly. the rest went straight through the gold foil. e) based on this evidence, what is in atom's center? positively charged particles.
Explanation:
The principle of radiation protection is to trigger deterministic and stochastic effect.
Explanation:
The main aim of principle of radiation is to prevent the deterministic effects of radiation and reduce the risks of stochastic effects.
There are three general principals of radiation used for dealing with ionising radiation are Justification, Dose limitation and Optimization.
The three basic radiation principles are time, distance and shielding.
The risk of exposure to radiation is measured using the conventional unit rem or SI unit (sievert).
Answer:
C₂H₂ + 3H₂ ⟶ 2CH₄
Explanation:
The initial concentrations are:
[CH₄] = 6.30 ÷ 6.00 = 1.05 mol·L⁻¹
[C₂H₂] = 4.20 ÷ 6.00 = 0.700 mol·L⁻¹
[H₂] = 11.15 ÷ 6.00 = 1.858 mol·L⁻¹
2CH₄ ⇌ C₂H₂ + 3H₂
I/mol·L⁻¹: 1.05 0.700 1.858
![Q = \dfrac{\text{[C$_{2}$H$_{2}$][H$_{2}$]}^{3}}{\text{[CH$_{4}$]}^{2}} = \dfrac{ 0.700\times 1.858^{3}}{1.05^{2}}= 4.07](https://tex.z-dn.net/?f=Q%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BC%24_%7B2%7D%24H%24_%7B2%7D%24%5D%5BH%24_%7B2%7D%24%5D%7D%5E%7B3%7D%7D%7B%5Ctext%7B%5BCH%24_%7B4%7D%24%5D%7D%5E%7B2%7D%7D%20%3D%20%5Cdfrac%7B%200.700%5Ctimes%201.858%5E%7B3%7D%7D%7B1.05%5E%7B2%7D%7D%3D%204.07)
Q > K
That means we have too many products.
The reaction will go to the left to get rid of the excess products.
C₂H₂ + 3H₂ ⟶ 2CH₄
Answer:
59.077 kJ/mol.
Explanation:
- From Arrhenius law: <em>K = Ae(-Ea/RT)</em>
where, K is the rate constant of the reaction.
A is the Arrhenius factor.
Ea is the activation energy.
R is the general gas constant.
T is the temperature.
- At different temperatures:
<em>ln(k₂/k₁) = Ea/R [(T₂-T₁)/(T₁T₂)]</em>
k₂ = 3k₁ , Ea = ??? J/mol, R = 8.314 J/mol.K, T₁ = 294.0 K, T₂ = 308.0 K.
ln(3k₁/k₁) = (Ea / 8.314 J/mol.K) [(308.0 K - 294.0 K) / (294.0 K x 308.0 K)]
∴ ln(3) = 1.859 x 10⁻⁵ Ea
∴ Ea = ln(3) / (1.859 x 10⁻⁵) = 59.077 kJ/mol.