I do not understand the full question, however if you are wondering which way Simone and the dog will go, they will go right because the force of 34 N from the dog is higher than the force of 16 N from Simone.
Answer:
6.75 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration = 16 m/s²
g = Acceleration due to gravity = 9.81 m/s²
Let y be the distance the rocket is accelerating
960-y is the distance traveled in free fall

In free fall

The distance the rocket will keep accelerating is 364.881828749 m
After which it will travel 960-364.881828749 = 595.118171251 m in free fall

The time the rocket is accelerating is 6.75 seconds
1) D
2) I would say A, but not 100%, its the only one that makes sense tho
I think these two variables are sufficient to completely specify the state.
In an isolated room with air only ,the volume is fixed.Mass ,density and its specific volume can be easily known.
Other thermodynamic properties like entropy, enthalpy etc are also fixed at a given temperature & pressure.
Answer:
Explanation:
Given that,
At one instant,
Center of mass is at 2m
Xcm = 2m
And velocity =5•i m/s
One of the particle is at the origin
M1=? X1 =0
The other has a mass M2=0.1kg
And it is at rest at position X2= 8m
a. Center of mass is given as
Xcm = (M1•X1 + M2•X2) / (M1+M2)
2 = (M1×0 + 0.1×8) /(M1 + 0.1)
2 = (0+ 0.8) /(M1 + 0.1)
Cross multiply
2(M1+0.1) = 0.8
2M1 + 0.2 =0.8
2M1 = 0.8-0.2
2M1 = 0.6
M1 = 0.6/2
M1 = 0.3kg
b. Total momentum, this is an inelastic collision and it momentum after collision is given as
P= (M1+M2)V
P = (0.3+0.1)×5•i
P = 0.4 × 5•i
P = 2 •i kgm/s
c. Velocity of particle at origin
Using conversation of momentum
Momentum before collision is equal to momentum after collision
P(before) = M1 • V1 + M2 • V2
We are told that M2 is initially at rest, then, V2=0
So, P(before) = 0.3V1
We already got P(after) = 2 •i kgm/s in part b of the question
Then,
P(before) = P(after)
0.3V1 = 2 •i
V1 = 2/0.3 •i
V1 = 6 ⅔ •i m/s
V1 = 6.667 •i m/s