1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adell [148]
3 years ago
12

In 1780, in what is now referred to as "Brady's Leap," Captain Sam Brady of the U.S. Continental Army escaped certain death from

his enemies by running over the edge of the cliff above Ohio's Cuyahoga River in (Figure 1) , which is confined at that spot to a gorge. He landed safely on the far side of the river. It was reported that he leapt 22 ft (≈ 6.7 m) across while falling 20 ft (≈ 6.1 m).
What is the minimum speed with which he’d need to run off the edge of the cliff to make it safely to the far side of the river?

Express your answer to two significant figures and include the appropriate units.

Physics
2 answers:
zysi [14]3 years ago
7 0

The minimum speed with which Captain Brady had to run off the edge of the cliff to make it safely to the far side of the river is around 6 meters per second.

<h3>Further explanation</h3>

This is a free fall 2-dimensional type of problem, therefor we can write equations for both dimensions which model the fall of captain Brady. Let's call <em>x </em>the distance travelled by the captain on the horizontal direction and <em>y </em>the distance travelled on the vertical direction.

Lets suppose that Brady jumped with a complete horizontal velocity from a point which we will call the origin (meaning zero horizontal and vertical displacement), and let's call <em>ta</em> the time it took for captain Brady to reach the river (meaning the time he spent on the air). The equations of motion for the captain will be:

x= V \cdot t

y= - \frac{g \cdot t^2}{2}

We know that at time <em>ta</em> the captain would have traveled 6.7 m on the horizontal direction, and 6.1 m in the vertical direction. Therefor we can write that:

6.7= V \cdot ta

-6.1= - \frac{g \cdot {ta}^2}{2}

Which gives us a system of 2 equations and 2 unknowns (<em>V</em> and <em>ta</em>). From the second equation we can solve for <em>ta</em> as:

ta = \sqrt{\frac{2 \cdot 6.1}{g}} =1.12 s

And solving for <em>V</em> on the first equation, we find that:

V= \frac{6.7}{1.12} = 5.98 \frac{m}{s}

Which is almost 6 meters per second.

<h3>Learn more</h3>
  • Free fall of an arrow: brainly.com/question/1597396
  • Concept of free fall: brainly.com/question/1708231
<h3>Keywords</h3>

Free fall, projectile, gravity

melamori03 [73]3 years ago
5 0

The minimum speed with which the captain Sam Brady of the US continental army had to run off the edge of the cliff to make it safely to the far side of the river is \boxed{19.667\text{ ft/s}} or \boxed{5.998\text{ m/s}} or \boxed{6\text{ m/s}} or \boxed{599.8\text{ cm/s}}.

Further explanation:

As Captain Sam Brady jumps from the cliff, he moves in two dimension under the action of gravity.

Given:

The height of free fall of the captain Brady is 20\text{ ft} or 6.1\text{ m}.

The horizontal distance moved by the captain Brady is 22\text{ ft} or 6.7\text{ m}.

Concept:

The time required to free fall of a body can be calculated by using the expression given below.

\left( { - s}\right)=ut-\frac{1}{2}g{t^2}                                 ……. (1)

The displacement is considered negative because the captain is moving in vertically downward direction.

Here, s is the distance covered by the body in free fall, u is the initial velocity of the object, g is the acceleration due to gravity and t is the time taken in free fall of a body.  

As the Caption jumps off the cliff, he has his velocity in the horizontal direction. The velocity of the captain in vertical direction is zero.

Substitute 0 for u in the equation (1) .

s=\frac{1}{2}g{t^2}  

Rearrange the above expression for t.

\boxed{t=\sqrt {\frac{{2s}}{g}}}                                                              …… (2)  

Converting acceleration due to gravity in \text{ft}/\text{s}^2 .

\begin{aligned}g&=\left( {9.81\,{\text{m/}}{{\text{s}}^{\text{2}}}} \right)\left( {\frac{{1.0\,{\text{ft/}}{{\text{s}}^{\text{2}}}}}{{0.305\,{\text{m/}}{{\text{s}}^{\text{2}}}}}} \right) \\&=32.16\,{\text{ft/}}{{\text{s}}^{\text{2}}} \\ \end{aligned}

Substitute 20\text{ ft} for s and 32.16\,{\text{ft/}}{{\text{s}}^{\text{2}}} for g in equation (2) .

\begin{aligned}t&=\sqrt {\frac{{2\left( {20\,{\text{ft}}} \right)}}{{\left( {32.16\,{\text{ft/}}{{\text{s}}^{\text{2}}}} \right)}}} \\&=1.116\,{\text{s}} \\ \end{aligned}

Therefore, the time taken by captain to free fall a height 20\text{ ft} is 1.116\text{ s}.  

In the same time interval captain has to move 22\text{ ft} in horizontal direction. The acceleration is zero in horizontal direction. So, the velocity will be constant throughout the motion in the horizontal direction.

The distance travelled by captain in the horizontal direction is given by,

x=v\cdot t

Rearrange the above expression for v.  

\boxed{v=\dfrac{x}{t}}                                                      …… (3)  

Here, x is the distance travelled in horizontal direction, v is the velocity of the captain and t is the time.  

Substitute 22\text{ ft} for x and 1.116\text{ s} for t in equation (3) .

\begin{aligned}v&=\frac{{22\,{\text{ft}}}}{{1.116\,{\text{s}}}} \\&=19.71\,{\text{ft/s}} \\ \end{aligned}

Thus, the minimum speed with which the captain Sam Brady of the US continental army had to run off the edge of the cliff to make it safely to the far side of the river is \boxed{19.667\text{ ft/s}} or \boxed{5.998\text{ m/s}} or \boxed{6\text{ m/s}} or \boxed{599.8\text{ cm/s}}.

Learn more:

1. Energy density stored in capacitor brainly.com/question/9617400

2. Kinetic energy of the electrons brainly.com/question/9059731

3. Force applied by the car on truck brainly.com/question/2235246

Keywords:

Free fall, projectile, gravity, 1780, Brady’s, leap, Captain, Sam Brady, US, continental army, enemies, Ohio’s, Cuyahoga river, 22 ft, 6.7 m, 20 ft, 6.1 m, minimum speed, run off, edge, cliff, safely, far side, river, 19.71 ft/s, 6 m/s, 6 meter/s, 5.99 m/s, 599.8 cm/s.

You might be interested in
Can anyone pls answer this plss plss I'm not sure which one it is​
lyudmila [28]

Answer:

a) wet marble , dry marble, newspaper, and towel

5 0
3 years ago
Evaluate tan(249).<br> O A. 1.36<br> B. 0.45<br> C. 0.41<br> D. 0.91
vodomira [7]

Answer:

tan 249 = 2.61

tan 249 = tan (249 - 180) = tan 69 = 2.61

3 0
3 years ago
a battery of 5v and internal resistance of 5 ohms is connected to a resistor of 20 ohms. calculate the value of terminal voltage
Alborosie

Answer:

A bird flies 75m in 15s.Calculate its speed

7 0
2 years ago
Voltage needed to raise current to 3.75a using 20,20,200 resistor set
Varvara68 [4.7K]

<u>Answer:</u> The voltage needed is 35.7 V

<u>Explanation:</u>

Assuming that the resistors are arranged in parallel combination.

For the resistors arranged in parallel combination:

\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}

We are given:

R_1=20\Omega\\R_2=20\Omega\\R_3=200\Omega

Using above equation, we get:

\frac{1}{R}=\frac{1}{20}+\frac{1}{20}+\frac{1}{200}\\\\\frac{1}{R}=\frac{10+10+1}{200}\\\\R=\frac{200}{21}=9.52\Omega

Calculating the voltage by using Ohm's law:

V=IR         .....(1)

where,

V = voltage applied

I = Current = 3.75 A

R = Resistance = 9.52\Omega

Putting values in equation 1, we get:

V=3.75\times 9.52\\\\V=35.7V

Hence, the voltage needed is 35.7 V

7 0
3 years ago
Read 2 more answers
When you improve your the ability of your muscles to repeatebly exert themselves you are improving your?
Irina-Kira [14]

It is muscular endurance.

5 0
3 years ago
Other questions:
  • What shape are the universe’s largest known galaxies? Question 12 options: A.elliptical B.spiral C.There aren't large galaxies!
    9·1 answer
  • A car is travelling with a velocity of 10 m/s and has a mass of 550 kg. The<br> car has<br> energy.
    14·1 answer
  • The mass of the basketball shown below is 4 times the mass of the baseball.
    5·1 answer
  • If white light shines on an object and the red, orange, green, blue and purple light is absorbed. What color does your eye see?
    12·2 answers
  • Explain how an event in one area could affect another area
    10·1 answer
  • How does natural selection produce change in a population of mice?
    7·1 answer
  • A car traveling at a speed of 13 meters per second accelerates uniformly to a speed of 25 meters per second in 5.0 seconds. 11-
    10·1 answer
  • If a vehicle is traveling at constant velocity and then comes to a sudden stop, has it undergone negative acceleration or positi
    6·1 answer
  • Question 17
    9·1 answer
  • At the exact same instant that a
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!