Answer:
1. Newton's first law
2.Newton's second law
3.Newton's third law
Explanation:
1. Newton's first law stated, In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force... this is base of the concept of inertia.
2. Newton's second law stated, In an inertial frame of reference, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma, or in easier words, F is directly proportional to a.
3. Newton's third law stated, When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body., In this case, the Normal Are opposite with gravititional force.
Answer:
Solution:
we have given the equation of motion is x(t)=8sint [where t in seconds and x in centimeter]
Position, velocity and acceleration are all based on the equation of motion.
The equation represents the position. The first derivative gives the velocity and the 2nd derivative gives the acceleration.
x(t)=8sint
x'(t)=8cost
x"(t)=-8sint
now at time t=2pi/3,
position, x(t)=8sin(2pi/3)=4*squart(3)cm.
velocity, x'(t)=8cos(2pi/3)==4cm/s
acceleration, x"(t)==8sin(2pi/3)=-4cm/s^2
so at present the direction is in y-axis.
I believe it is -1.11 m/s^2. I will let you know if its correct
<h2>Greetings!</h2>
To find speed, you need to remember the formula:
Speed = distance ÷ time
So plug the given values in:
500 ÷ 30 = 16.66
<h3>So the speed is 16.66m/s (metres per second)</h3>
<h2>Hope this helps!</h2>