Answer:
450 kJ
Explanation:
Q = mCΔT
where Q is heat (energy),
m is mass,
C is specific heat capacity,
and ΔT is the temperature change.
Q = (1.2 kg) (4180 J/kg/°C) (100°C − 10°C)
Q = 451,440 J
Q ≈ 450 kJ
The force of impact is same for both bus and the bicycle. The acceleration of bicycle will be greater than the acceleration of bus.
<u>Explanation:</u>
The interaction that occurs between two objects refers to collision. this makes the two objects to come in contact with each other. The third law of Newton states that, when there occurs a collision between two objects, then the force that is applied on each object will be same. But, the direct in which the force is impacted will be in opposite direction.
The magnitude of the forces will be equal but the direction will not be same. The collision results in gaining the momentum by one object and losing momentum by another. The acceleration is mainly associated with the mass of the object. When the object has smaller mass, it will be accelerated more. In the given example, as bus is heavier than bicycle, the bicycle will have greater acceleration than the bus.
Complete question:
In the movie The Martian, astronauts travel to Mars in a spaceship called Hermes. This ship has a ring module that rotates around the ship to create “artificial gravity” within the module. Astronauts standing inside the ring module on the outer rim feel like they are standing on the surface of the Earth. (The trailer for this movie shows Hermes at t=2:19 and demonstrates the “artificial gravity” concept between t= 2:19 and t=2:24.)
Analyzing a still frame from the trailer and using the height of the actress to set the scale, you determine that the distance from the center of the ship to the outer rim of the ring module is 11.60 m
What does the rotational speed of the ring module have to be so that an astronaut standing on the outer rim of the ring module feels like they are standing on the surface of the Earth?
Answer:
The rotational speed of the ring module have to be 0.92 rad/s
Explanation:
Given;
the distance from the center of the ship to the outer rim of the ring module r, = 11.60 m
When the astronaut standing on the outer rim of the ring module feels like they are standing on the surface of the Earth, then their centripetal acceleration will be equal to acceleration due to gravity of Earth.
Centripetal acceleration, a = g = 9.8 m/s²
Centripetal acceleration, a = v²/r
But v = ωr
a = g = ω²r

Therefore, the rotational speed of the ring module have to be 0.92 rad/s
The best answer for this question is generally the best period to look for crabs is for the duration of the full moon, this is as a result of most invertebrates being nocturnal and being more effortlessly spotted and being fascinated to light sources.
There are two ways to solve this problem. First we write the given.
Given: Force F = 400 N; Height h = 0.5 m; Time t = 2 s
Formula: P = W/t; but Work W = Force x distance or W = f x d
Weight is also a Force, therefore: W = mg, solve for Mass m = ?
m = w/g m = 400 N/9.8 m/s² m = 40.82 Kg
P = W/t = F x d/t = mgh/t P = (40.82 Kg)(9.8 m/s²)/2 s
P = 100 J/s or 100 Watts