It is to be noted that it is impossible to find the Maclaurin Expansion for F(x) = cotx.
<h3>What is
Maclaurin Expansion?</h3>
The Maclaurin Expansion is a Taylor series that has been expanded around the reference point zero and has the formula f(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!
<h3>
What is the explanation for the above?</h3>
as indicated above, the Maclaurin infinite series expansion is given as:
F(x)=f(0)+f′. (0) 1! x+f″ (0) 2! x2+⋯+f[n](0)n!
If F(0) = Cot 0
F(0) = ∝ = 1/0
This is not definitive,
Hence, it is impossible to find the Maclaurin infinite series expansion for F(x) = cotx.
Learn more about Maclaurin Expansion at;
brainly.com/question/7846182
#SPJ1
A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.
Explanation:
From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).
To find the resistance of 260 ft (79.25 m) of size 4 AWG,
R= K * L/ A
K = 0.0214 ohm mm²/m
L = 79.25 m
A = 21.2 mm²
R = 0.0214 * 
= 0.0214 * 3.738
= 0.0792 ohm.
Thus the resistance of uncoated copper wire is 0.0792 ohm
Answer:
head and give four reason for your choice
This is an arch, its basically a half circle attach to a rectangle, you could also think of it as an upside down U. A dome is a Sphere with the inside hollowed out.
1 difference is a dome is a 3 dimensional shape while an arch is normally not. Or that a dome is the complete shape with a arch act as it’s diameter.
Answer:
diameter of the sprue at the bottom is 1.603 cm
Explanation:
Given data;
Flow rate, Q = 400 cm³/s
cross section of sprue: Round
Diameter of sprue at the top
= 3.4 cm
Height of sprue, h = 20 cm = 0.2 m
acceleration due to gravity g = 9.81 m/s²
Calculate the velocity at the sprue base
= √2gh
we substitute
= √(2 × 9.81 m/s² × 0.2 m )
= 1.98091 m/s
= 198.091 cm/s
diameter of the sprue at the bottom will be;
Q = AV = (π
/4) × 
= √(4Q/π
)
we substitute our values into the equation;
= √(4(400 cm³/s) / (π×198.091 cm/s))
= 1.603 cm
Therefore, diameter of the sprue at the bottom is 1.603 cm