Where loads are likely to be on continuously, the calculated load for branch circuits and feeders must be figured at 125%.
Section 210.19(A)(1) permits the bigger of the two values listed below to be utilized as the connectors 's ultimate size for sizing an ungrounded branch circuit conductor:
Without any extra adjustments or corrections, either 125% of the continuous load, OR
When adjustment and corrective factors are applied, the load is 100% (not 125% as stated previously).
This will be the same in the 2020 NEC. The introduction of new exception 2 is what has changed. To comprehend this new exception, one must study it very carefully. A part of a branch circuit connected to pressure connectors (such as power distribution blocks) that complies with 110.14(C)(2) may now be sized using the continuous load plus the noncontiguous load instead of 125% of the continuous load thanks to the new exception.
To know more about connectors click here:
brainly.com/question/16987039
#SPJ4
Answer:
809.98°C
Explanation:
STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.
Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.
Biot value = (220 × 0.1)÷ 110 = 0.2.
Biot value = 0.2.
STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;
Fourier number = thermal diffusivity × time ÷ (length)^2.
Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.
STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.
Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.
= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.
Answer:
Explanation:
1. With the operands R0, R1, the program would compute AND operation and ADD operation .
2. The operands could truly be signed 2's complement encoded (i.e Yes) .
3. The overflow truly occurs when two numbers that are unsigned were added and the result is larger than the capacity of the register, in that situation, overflow would occur and it could corrupt the data.
When the result of an operation is smaller in magnitude than the smallest value represented by the data type, then arithmetic underflow will occur.