1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
8

What is the solution to the system of equations?2x-y=7y=2x+3​

Engineering
1 answer:
AleksAgata [21]3 years ago
6 0

Answer:

No solution.

Explanation:

Solve with substitution or elimination.

If you use substitution, plug the expression for y in the second equation into the first equation.

2x − (2x + 3) = 7

2x − 2x − 3 = 7

-3 = 7

No solution.

If you use elimination, add the equations together to eliminate y.

2x − y + y = 7 + 2x + 3

2x = 10 + 2x

0 = 10

No solution.

There is no solution.

You might be interested in
An incandescent light bulb can be regarded as a resistor. If its power output is 100W, calculate the resistance of the light bul
stira [4]

Answer:121\ \Omega

0.909\ A

Explanation:

Given

Power P=100\ W

Voltage applied V=110\ V

Resistance of the bulb is given by

P=\frac{V^2}{R}

100=\frac{110^2}{R}

R=\frac{12100}{100}

R=121\ \Omega

Current drawn by the Power source is given by

P=V\cdot I

I=\frac{P}{V}

I=\frac{100}{110}

I=0.909\ A

8 0
3 years ago
The mechanical energy of an object is a combination of its potential energy and its
saveliy_v [14]

The mechanical energy of an object is a combination of its potential energy and its <em><u>kinetic</u></em><em><u> </u></em><em><u>energy</u></em><em><u>.</u></em>

6 0
2 years ago
In poor weather, you should __ your following distance
Ratling [72]

Answer:

I think reduce your following distance

5 0
3 years ago
Read 2 more answers
A hot air balloon is used as an air-vehicle to carry passengers. It is assumed that this balloon is sealed and has a spherical s
monitta

Answer:

a. \dfrac{D_{1}}{ D_{2}}  =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n} which is constant therefore, n = constant

b. The temperature at the end of the process is 109.6°C

c. The work done by the balloon boundaries = 10.81 MJ

The work done on the surrounding atmospheric air = 10.6 MJ

Explanation:

p₁ = 100 kPa

T₁ = 27°C

D₁ = 10 m

v₂ = 1.2 × v₁

p ∝ α·D

α = Constant

v_1 = \dfrac{4}{3} \times  \pi \times r^3

\therefore v_1 = \dfrac{4}{3} \times  \pi \times  \left (\dfrac{10}{2}  \right )^3 = 523.6 \ m^3

v₂ = 1.2 × v₁ = 1.2 × 523.6 = 628.32 m³

Therefore, D₂ = 10.63 m

We check the following relation for a polytropic process;

\dfrac{p_{1}}{p_{2}} = \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} = \left (\dfrac{T_{1}}{T_{2}}   \right )^{\dfrac{n}{n-1}}

We have;

\dfrac{\alpha \times D_{1}}{\alpha \times D_{2}} = \left (\dfrac{ \dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_2}{2}  \right )^3}{\dfrac{4}{3} \times  \pi \times  \left (\dfrac{D_1}{2}  \right )^3}   \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

\dfrac{D_{1}}{ D_{2}} = \left (\dfrac{   \left{D_2}  }{ {D_1}}   \right )^{3\times n} =  \left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )^{-3\times n}

\dfrac{ D_{1}}{ D_{2}} = \left ( 1.2  \right )^{n} = \left (\dfrac{   \left{D_2}  ^3}{ {D_1}^3}   \right )^{n}

log  \left (\dfrac{D_{1}}{ D_{2}}\right )  =  -3\times n \times log\left (\dfrac{   \left{D_1}  }{ {D_2}}   \right )

n = -1/3

Therefore, the relation, pVⁿ = Constant

b. The temperature T₂ is found as follows;

\left (\dfrac{628.32 }{523.6}   \right )^{-\dfrac{1}{3} } = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{-\dfrac{1}{3}}{-\dfrac{1}{3}-1}} = \left (\dfrac{300.15}{T_{2}}   \right )^{\dfrac{1}{4}}

T₂ = 300.15/0.784 = 382.75 K = 109.6°C

c. W_{pdv} = \dfrac{p_1 \times v_1 -p_2 \times v_2 }{n-1}

p_2 = \dfrac{p_{1}}{ \left (\dfrac{V_{2}}{V_{1}}   \right )^{n} } =  \dfrac{100\times 10^3}{ \left (1.2) \right  ^{-\dfrac{1}{3} } }

p₂ =  100000/0.941 = 106.265 kPa

W_{pdv} = \dfrac{100 \times 10^3 \times 523.6 -106.265 \times 10^3  \times 628.32 }{-\dfrac{1}{3} -1} = 10806697.1433 \ J

The work done by the balloon boundaries = 10.81 MJ

Work done against atmospheric pressure, Pₐ, is given by the relation;

Pₐ × (V₂ - V₁) = 1.01×10⁵×(628.32 - 523.6) = 10576695.3 J

The work done on the surrounding atmospheric air = 10.6 MJ

4 0
3 years ago
River models are used to study many different types of flow situations. A certain small river has an average width and depth of
slavikrds [6]

Answer: 7ft x21 I’d be right but yes I am

Explanation: because it is Welty

4 0
3 years ago
Other questions:
  • The army has cars and boats etc right
    7·1 answer
  • Entropy change is evaluated using Eq. 6.2a based on an internally reversible process. Can the entropy change between two states
    14·1 answer
  • A poundal is the force required to accelerate a mass of 1 lbm at a rate of 1 ft/(s^2). Determine the acceleration of an object o
    10·1 answer
  • before adjusting drive-belt tension, technician a checks for proper pulley alignment. technician b looks up the specified belt t
    9·1 answer
  • Your manager has asked you to research and recommend a writing guide that examiners in your digital forensics company can use fo
    8·1 answer
  • 7. The "3 second rule" is the time you should pause at an intersection marked with a stop sign.
    6·1 answer
  • Nơi nào có điện tích thì xung quanh điện tích đó có :
    9·1 answer
  • Distinguish between systems analysis and systems design?
    12·1 answer
  • A reservoir rock system located between a depth of 2153m and a depth of
    10·1 answer
  • A properly fitted wearable pfd should have which characteristics
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!