Answer:heat brings it up then down
Explanation:
Answer:
If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface.
Explanation:
Option A is incorrect because, given this case, it is easier to calculate the field.
Option B is incorrect because, in a situation where the surface is placed inside a uniform field, option B is violated
Option C is also incorrect because it is possible to be a field from outside charges, but there will be an absence of net flux through the surface from these.
Hence, option D is the correct answer. "If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface."
I attached a free body diagram for a better understanding of this problem.
We start making summation of Moments in A,



Then we make a summation of Forces in Y,



At the end we calculate the angle with the sin.


Answer:
2960 N
Explanation:
Convert rev/min to rad/s:
150 rev/min × (2π rad/rev) × (1 min / 60 s) = 50π rad/s
Sum of forces in the centripetal direction:
∑F = ma
T = m v² / r
T = m ω² r
T = (0.2 kg) (50π rad/s)² (0.6 m)
T = 2960 N