Answer:
Qx = 9.10
m³/s
Explanation:
given data
diameter = 85 mm
length = 2 m
depth = 9mm
N = 60 rev/min
pressure p = 11 ×
Pa
viscosity n = 100 Pas
angle = 18°
so Qd will be
Qd = 0.5 × π² ×D²×dc × sinA × cosA ..............1
put here value and we get
Qd = 0.5 × π² × ( 85
)²× 9
× sin18 × cos18
Qd = 94.305 ×
m³/s
and
Qb = p × π × D × dc³ × sin²A ÷ 12 × n × L ............2
Qb = 11 ×
× π × 85
× ( 9
)³ × sin²18 ÷ 12 × 100 × 2
Qb = 85.2 ×
m³/s
so here
volume flow rate Qx = Qd - Qb ..............3
Qx = 94.305 ×
- 85.2 ×
Qx = 9.10
m³/s
Answer:
The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region
Explanation:
The shear modulus (G) is the ratio of shear stress to shear strain. Like the modulus of elasticity, the shear modulus is governed by Hooke’s Law: the relationship between shear stress and shear strain is proportional up to the proportional limit of the material. The angle of twist can be computed using the material’s shear modulus if and only if the shear stress is still in the elastic region.
Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes
Answer:
after 8 stepshddnffuddbnggkbdbkloyr