'A' and 'C' talk about energy being created and destroyed. That can't happen.
'D' trailed off in the middle, and we don't know WHAT it was talking about.
'B' is the only correct statement.
Explanation:
It is given that,
Mass of the brick, m = 1.15 kg
Radius of the circle, r = 1.44 m
The cable will break if the tension exceeds 43.0 N
Let v is the maximum sped can have at the bottom of the circle before the cable will break. At the bottom of the circle, the net force is equal to the centripetal force along with the weight of the brick. So,




v = 6.30 m/s
So, the maximum speed of the brick at the bottom of the circle before the cable will break is 6.3 m/s. Hence, this is the required solution.
The precipitate is the barium sulfate, or 3) BaSO4. This is because it is a solid (as seen by the (s)), unlike the other aqueous product. The fact that it is a solid means that it is insoluble in water and therefore a precipitate.
Hope this helps!
When the sun, moon, and Earth are lined up (during a new or full moon), the solar tide adds to the lunar tide to produce extremely high tides and very low tides, both of which are known as spring tides.
- Basically describes a situation in astronomy where three celestial bodies align in a straight line as part of a gravitational system. The phrase is frequently used to describe how the Sun, Moon, and Earth are in a straight line.
- The moon is responsible for causing high and low tides. The tidal force is produced by the moon's gravitational pull. Earth and its water protrude outward on both the side that is closest to and farthest from the moon as a result of the tidal force. These watery peaks are high tide
To know more about high tides
brainly.com/question/11243732
#SPJ4
Answer:
n physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion.[1] It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes. The same amount of work is done by the body when decelerating from its current speed to a state of rest.
In classical mechanics, the kinetic energy of a non-rotating object of mass m traveling at a speed v is {\displaystyle {\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}}{\begin{smallmatrix}{\frac {1}{2}}mv^{2}\end{smallmatrix}}. In relativistic mechanics, this is a good approximation only when v is much less than the speed of light.
The standard unit of kinetic energy is the joule, while the imperial unit of kinetic energy is the foot-pound.
Explanation: