The first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
<h3>
Velocity of the wave</h3>
The velocity of the wave is calculated as follows;
v = √T/μ
where;
- T is tension
- μ is mass per unit length = 2 g/m = 0.002 kg/m
v = √(50/0.002)
v = 158.1 m/s
<h3>First harmonic or fundamental frequency of the wave</h3>
f₀ = v/λ
where;
f₀ = v/2L
f₀ = 158.1/(2 x 0.6)
f₀ = 131.8 Hz
<h3>Second harmonic of the wave</h3>
f₁ = 2f₀
f₁ = 2(131.8 Hz)
f₁ = 263.6 Hz
<h3>Third harmonic of the wave</h3>
f₂ = 3f₀
f₂ = 3(131.8 Hz)
f₂ = 395.4 Hz
Thus, the first three harmonics of the string are 131.8 Hz, 263.6 Hz and 395.4 Hz.
Learn more about harmonics here: brainly.com/question/4290297
#SPJ1
Answer:
5m/8
Explanation:
Function T gives the time the Hobbits have to prepare for the attack, T(k), in minutes, as a function of troll's distance, k, in meters.
Function V gives visibility from the watchtower, V(m), in meters, as a function of the height of the watchtower, m, in meters.
Therefore, T(V(m)) will give the time the Hobbits have to prepare for the troll attack as a function of the height, m, of the watchtower.
We can input m into function V to obtain the visibility from watchtower, V(m), in meters. Since visibility indicates the distance you can see, this also gives the distance of the trolls. This can then be input into function T to obtain the time that the Hobbits have to prepare for a troll attack.
Let's find T(V(m)) by substituting the formula for V(m) into function T as shown below.
T(V(M))=T(50m)
=50m/80
We can simplify this as follows:
=50m/80
=5m/8
Answer:
660 J/kg/°C
Explanation:
Heat lost by metal = heat gained by water
-m₁C₁ΔT₁ = m₂C₂ΔT₂
-(0.45 kg) C₁ (21°C − 80°C) = (0.70 kg) (4200 J/kg/°C) (21°C − 15°C)
C₁ = 660 J/kg/°C
Nah gaya seperti titik fashion seperti apa yang Anda mana dan hal-hal seperti itu. (tell me if you cant understand)