1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
2 years ago
11

Is this statement true or false concerning squall line thunderstorm development? These often form ahead of the advancing front b

ut rarely behind it because lifting of warm, humid air and the generation of a squall line usually occur in the warm sector ahead of an advancing cold front. Behind a cold front, the air motions are usually downward, and the air is cooler and drier.
Physics
1 answer:
Pavlova-9 [17]2 years ago
3 0

Answer: The following statement is true about squall line thunderstorm development: <em><u>These often form ahead of the advancing front but rarely behind it because lifting of warm, humid air and the generation of a squall line usually occur in the warm sector ahead of an advancing cold front. Behind a cold front, the air motions are usually downward, and the air is cooler and drier.</u></em>

<em>An upper-level wave, accountable for the fabrication of a squall line, extend in front of and backside a cold front, the air backside the front is cold, steady and settling while the air ahead of the front is hot and co-seismic.</em>

You might be interested in
A capacitor in a single-loop RC circuit is charged to 85% of its final potential difference in 2.4 s. What is the time constant
atroni [7]

Answer:

The  time constant is  \tau  = 1.265 s

Explanation:

From the question we are told that

     the time take to charge is  t = 2.4 \  s

The mathematically representation for voltage potential of a capacitor at different time is

        V  =  V_o  - e^{-\frac{t}{\tau} }

Where  \tau  is the time constant  

           V_o is the potential of the capacitor when it is full

     So  the capacitor potential will be  100%  when it is full thus  V_o  =100%  =  1  

and from the  question we are told that the  at the given time the potential of the capacitor is 85% = 0.85 of its final potential so

      V  = 0.85

Hence

     0.85 =  1 -  e^{-\frac{2.4}{\tau } }

       - {\frac{2.4}{\tau } }  =  ln0.15

        \tau  = 1.265 s

     

7 0
3 years ago
I NEED THIS ANSWER TODAY PLEASE HELP ME
Anastaziya [24]

The answer is "B" - If there are no windows then there will be no light coming in, and therefore you don't have to worry about what time of day you do the experiment at.

7 0
3 years ago
Read 2 more answers
A man has a mass of 66 kg on earth. What’s his weight in pounds?
Vlad1618 [11]

Answer:

646.8 N

Explanation:

3 0
2 years ago
A light bulb has a voltage of 36 and a current of 8 A. Calculate the resistance of the light bulb
timurjin [86]
R = U : I. U is in Voltage and I is in Ampère. That gives you R = 36 : 8 = 4,5 Ohm
4 0
3 years ago
A small object with momentum 7.0 kg∙m/s approaches head-on a large object at rest. The small object bounces straight back with a
EastWind [94]

Answer:

The magnitude of the large object's momentum change is 3 kilogram-meters per second.

Explanation:

Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:

p_{S,1}+p_{B,1} = p_{S,2}+p_{B,2} (1)

Where:

p_{S,1}, p_{S,2} - Initial and final momemtums of the small object, measured in kilogram-meters per second.

p_{B,1}, p_{B,2} - Initial and final momentums of the big object, measured in kilogram-meters per second.

If we know that p_{S,1} = 7\,\frac{kg\cdot m}{s}, p_{B,1} = 0\,\frac{kg\cdot m}{s} and p_{S, 2} = 4\,\frac{kg\cdot m}{s}, then the final momentum of the big object is:

7\,\frac{kg\cdot m}{s} + 0\,\frac{kg\cdot m}{s} = 4\,\frac{kg\cdot m}{s}+p_{B,2}

p_{B,2} = 3\,\frac{kg\cdot m}{s}

The magnitude of the large object's momentum change is:

p_{B,2}-p_{B,1} = 3\,\frac{kg\cdot m}{s}-0\,\frac{kg\cdot m}{s}

p_{B,2}-p_{B,1} = 3\,\frac{kg\cdot m}{s}

The magnitude of the large object's momentum change is 3 kilogram-meters per second.

4 0
2 years ago
Other questions:
  • Sound pulses emitted by a dolphin travel through 20°c ocean water at a rate of 1450 m/s. in 20°c air, these pulses would travel
    6·1 answer
  • Copper has a specific heat of 0.386 J/g°C. How much heat is required to increase 5.00 g of copper from 0.0°C to 10.0°C?
    10·1 answer
  • What happens to a shopping cart if you get it rolling and then release it?
    14·1 answer
  • The regular use of a narcotic drug will lead to blank dependence
    13·2 answers
  • What is the impulse of a 131g baseball when it strikes a batter at 57 m/s
    15·1 answer
  • A Bear moves at a speed of 8 m/s for a distance of 300 m. How long does it take the Bear to travel this distance?
    8·1 answer
  • Light containing two different wavelengths passes through a diffraction grating with 1,250 slits/cm. On a screen 17.5 cm from th
    8·1 answer
  • attention random asian ladies have been randomly liking peoples posts on tiktok, its not a joke Warning: dont click on their lin
    8·2 answers
  • E-mail is usually a poor choice for the distribution of sensitive electronic files because __________. A. Paper copies seem more
    6·1 answer
  • (a) Calculate the height of a cliff if it takes 2. 35 s for a rock to hit the ground when it is thrown straight up from the clif
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!