1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pashok25 [27]
3 years ago
8

. A 10W light bulb connected to a series of batteries may produce a brighter lightthan a 250W light bulb connected to the same b

atteries. Why? Explain.
Engineering
2 answers:
Dvinal [7]3 years ago
3 0

Answer:

Explanation:

From the equation:

Power dissipated= square of voltage supplied by battery ÷ Resistance of the load

i.e P= V^2/R

It means that at constant voltage, the the power consumed is inversely related to the resistance. Therefore the 10W bulb which has a higher resistance will consume less power using the sufficiently excess power dissipated to glow brighter than the 250W bulb which has a low resistance. The power dissipated will partly be used to overcome this low resistance making less power available for heating up the 250W bulb .

gogolik [260]3 years ago
3 0

ANSWER:

A 10W bulb may shine brighter than a 250W bulb, when the two are connected to the same battery. This can happen when the battery is low or not fully charged. Because the 10W bulb has a high resistance more than a 250W bulb, it makes the 10W bulb to be more efficient than the 250W bulb.

When a low current is passed through the fillament of the two bulbs, the 10W bulb which has high resistance, uses almost all the current that enters the filament to emit more light, more than the 250W bulb which has a low resistance and will converts almost all the current that enters the filament into heat energy. In the 250W bulb only about 8% of the current are used to light up the bulb and the rest are converted to heat energy. This explains why a bulb which it's watt is higher will be more hotter when lighted up, than a bulb which watt is lower.

Another reason while the 10W bulb will shine brighter is when the fillament in it are coiled tight round itself ( example is a fluorescent bulb). It will emit more light than a 250W watt bulb that the filament are not coiled (example is an incandescent bulb).

NOTE : On a normal circumstances, a 250W bulb will shine brighter than a 10W bulb, because the higher the electric energy a bulb consumes the brighter light the filament will produce. Watt is the amount of electric energy the bulb can consume, therefore a bulb with 250W is assumed to produce more light than a bulb with 10W.

You might be interested in
A very large plate is placed equidistant between two vertical walls. The 10-mm spacing between the plate and each wall is filled
Vikentia [17]

Answer:

Force per unit plate area is 0.1344 N/m^{2}

Solution:

As per the question:

The spacing between each wall and the plate, d = 10 mm = 0.01 m

Absolute viscosity of the liquid, \mu =1.92\times 10^{- 3} Pa-s

Speed, v = 35 mm/s = 0.035 m/s

Now,

Suppose the drag force that exist between each wall and plate is F and F' respectively:

Net Drag Force = F' + F''

F = \tau A

where

\tau = shear stress

A = Cross - sectional Area

Therefore,

Net Drag Force, F = (\tau ' +\tau '')A

\frac{F}{A} = \tau ' +\tau ''

Also

F = \frac{\mu v}{d}

where

\mu = dynamic coefficient of viscosity

Pressure, P = \frac{F}{A}

Therefore,

\frac{F}{A} = \frac{\mu v}{d} + \frac{\mu v}{d} = 2\frac{\mu v}{d}

\frac{F}{A} = 2\frac{1.92\times 10^{- 3}\times 0.035}{0.010} = 0.01344 N/m^{2}

8 0
3 years ago
Which line from "On Becoming an Inventor" supports the idea that Dean's time at Worcester Polytechnic Institute was very useful
Stolb23 [73]

Answer:

Explanation:

The line from "On becoming an inventor" that says:

"I found that at college I could get help from my teachers with solving business problems and in learning new techniques for designing new things"

On Becoming an Inventor was by Dean Kamen an American Engineer, Inventor and Businessman

3 0
3 years ago
Read 2 more answers
Describe the algorithm you use for looking up a person’s telephone number in the phone book. The input is person’s name; the out
Stella [2.4K]

Answer:

The Algorithm for finding a number from a phone book with the person's name as the input and the phone number as output is as follows:

1. Try to remember the name, i.e last name first and first name last, Also make sure you get the spelling right.

2. Using the first letter of the last name, locate the appropriate alphabetical section in which the name should appear.

3. Using the second letter of the last name, find the subsection of first and second letters combined, in the appropriate order, in which the name should appear. (If the last name consists of only two letters, find the appropriate first name.)

4. Using the third letter, find the possible names in a subsection of the first three letters in the correct order. Continue this step with x+1 letters of the name until you have a subsection of names exactly matching the last name of the person whose number you are trying to locate. (x is the number of letters used in the previous step, consistently.) If there is only one of the last name, (check for duplicates) identify the number, and return phone number information.

5. Begin the second step using the first letter of the first name, but limit the section to only those exactly matching the last name. Continue to step 4, again focusing on the first name only within the set of exactly matching last names.

6. When both first and last name match the name you are locating, check for duplicates. IF there are no duplicates, return phone number information.

Explanation:

People's names are generally arranged in phone books in alphabetical order by the last name of the person. The first name of the person is listed after the last name so that people of the same last name can be differentiated.

7 0
3 years ago
Read 2 more answers
Determine the angular acceleration of the uniform disk if (a) the rotational inertia of the disk is ignored and (b) the inertia
lukranit [14]

Answer:

α = 7.848 rad/s^2  ... Without disk inertia

α = 6.278 rad/s^2  .... With disk inertia

Explanation:

Given:-

- The mass of the disk, M = 5 kg

- The right hanging mass, mb = 4 kg

- The left hanging mass, ma = 6 kg

- The radius of the disk, r = 0.25 m

Find:-

Determine the angular acceleration of the uniform disk without and with considering the inertia of disk

Solution:-

- Assuming the inertia of the disk is negligible. The two masses ( A & B )  are hung over the disk in a pulley system. The disk is supported by a fixed support with hinge at the center of the disk.

- We will make a Free body diagram for each end of the rope/string ties to the masses A and B.

- The tension in the left and right string is considered to be ( T ).

- Apply newton's second law of motion for mass A and mass B.

                      ma*g - T = ma*a

                      T - mb*g = mb*a

Where,

* The tangential linear acceleration ( a ) with which the system of two masses assumed to be particles move with combined constant acceleration.

- g: The gravitational acceleration constant = 9.81 m/s^2

- Sum the two equations for both masses A and B:

                      g* ( ma - mb ) = ( ma + mb )*a

                      a =  g* ( ma - mb ) / ( ma + mb )

                      a = 9.81* ( 6 - 4 ) / ( 6 + 4 ) = 9.81 * ( 2 / 10 )

                      a = 1.962 m/s^2  

- The rope/string moves with linear acceleration of ( a ) which rotates the disk counter-clockwise in the direction of massive object A.

- The linear acceleration always acts tangent to the disk at a distance radius ( r ).

- For no slip conditions, the linear acceleration can be equated to tangential acceleration ( at ). The correlation between linear-rotational kinematics is given below :

                     a = at = 1.962 m/s^2

                     at = r*α      

Where,

           α: The angular acceleration of the object ( disk )

                    α = at / r

                    α = 1.962 / 0.25

                    α = 7.848 rad/s^2                                

- Take moments about the pivot O of the disk. Apply rotational dynamics conditions:

             

                Sum of moments ∑M = Iα

                 ( Ta - Tb )*r = Iα

- The moment about the pivots are due to masses A and B.

 

               Ta: The force in string due to mass A

               Tb: The force in string due to mass B

                I: The moment of inertia of disk = 0.5*M*r^2

                   ( ma*a - mb*a )*r = 0.5*M*r^2*α

                   α = ( ma*a - mb*a ) / ( 0.5*M*r )

                   α = ( 6*1.962 - 4*1.962 ) / ( 0.5*5*0.25 )

                   α = ( 3.924 ) / ( 0.625 )

                   α = 6.278 rad/s^2

6 0
3 years ago
Air at a pressure of 6000 N/m^2 and a temperature of 300C flows with a velocity of 10 m/sec over a flat plate of length 0.5 m. E
White raven [17]

Answer:

Q=hA(T_{w}-T_{inf})=16.97*0.5(27-300)=-2316.4J

Explanation:

To solve this problem we use the expression for the temperature film

T_{f}=\frac{T_{\inf}+T_{w}}{2}=\frac{300+27}{2}=163.5

Then, we have to compute the Reynolds number

Re=\frac{uL}{v}=\frac{10\frac{m}{s}*0.5m}{16.96*10^{-6}\rfac{m^{2}}{s}}=2.94*10^{5}

Re<5*10^{5}, hence, this case if about a laminar flow.

Then, we compute the Nusselt number

Nu_{x}=0.332(Re)^{\frac{1}{2}}(Pr)^{\frac{1}{3}}=0.332(2.94*10^{5})^{\frac{1}{2}}(0.699)^{\frac{1}{3}}=159.77

but we also now that

Nu_{x}=\frac{h_{x}L}{k}\\h_{x}=\frac{Nu_{x}k}{L}=\frac{159.77*26.56*10^{-3}}{0.5}=8.48\\

but the average heat transfer coefficient is h=2hx

h=2(8.48)=16.97W/m^{2}K

Finally we have that the heat transfer is

Q=hA(T_{w}-T_{inf})=16.97*0.5(27-300)=-2316.4J

In this solution we took values for water properties of

v=16.96*10^{-6}m^{2}s

Pr=0.699

k=26.56*10^{-3}W/mK

A=1*0.5m^{2}

I hope this is useful for you

regards

8 0
3 years ago
Other questions:
  • Show how am MDP with a reward function R(s, a, s’) can be transformed into a different MDP with reward function R(s, a), such th
    15·1 answer
  • How many types of engineering specialist are there?
    14·1 answer
  • The flow curve for a certain metal has parameters: strain-hardening
    8·1 answer
  • A thermistor is a temperature‐sensing element composed of a semiconductor material, which exhibits a large change in resistance
    13·1 answer
  • Buying shop supplies from the shop owner to work on your own car at home is an ethical practice.
    14·1 answer
  • Both equilibrium equations and constitutive models are needed to solve statically indeterminate problems. a)- True b)-False
    13·1 answer
  • What’s the population in the world and why does it keep increasing in bad areas.
    8·1 answer
  • A beam of span L meters simply supported by the ends, carries a central load W. The beam section is shown in figure. If the maxi
    5·1 answer
  • Explain the proper uses of shop equipment. (explain to me how to use 3 pieces of shop equipment.)
    7·1 answer
  • A +7.5% grade meets a horizontal grade on a section of a rural mountainous highway. If the length of the crest vertical curve fo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!