1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rina8888 [55]
3 years ago
9

The siren on an ambulance is emitting a sound whose frequency is 2250 Hz. The speed of sound is 343 m/s. (a) If the ambulance is

stationary and you (the "observer") are sitting in a parked car, what are the wavelength and the frequency of the sound you hear? (b) Suppose that the ambulance is moving toward you at a speed of 26.6 m/s. Determine the wavelength and the frequency of the sound you hear. (c) If the ambulance is moving toward you at a speed of 26.6 m/s and you are moving toward it at a speed of 11.0 m/s, find the wavelength and frequency of the sound you hear.
Physics
1 answer:
Marina86 [1]3 years ago
4 0

(a) 2250 Hz, 0.152 m

In this situation, both the ambulance and observer are stationary.

This means that there is no shift in frequency/wavelength due to the Doppler effect. So, the frequency heard by the observer is exactly identical to the frequency emitted by the ambulance:

f = 2250 Hz

While the wavelength is given by the formula:

\lambda=\frac{v}{f}

where

v = 343 m/s is the speed of sound

f = 2250 Hz is the frequency of the sound

Substituting, we find

\lambda=\frac{343 m/s}{2250 Hz}=0.152 m

(b) 2439.2 Hz, 0.141 m

The Doppler effect formula for a moving source is

f'=(\frac{v}{v+v_s})f

where

f' is the apparent frequency

f is the original frequency

v is the speed of sound

v_s is the velocity of the source (the ambulance), which is positive if the source is moving away from the observer, negative otherwise

Here the ambulance is moving toward the observer, so

v_s = -26.6 m/s

Substituting into the formula, we find the frequency heard by the observer:

f'=(\frac{343 m/s}{343 m/s-26.6 m/s})(2250 Hz)=2439.2 Hz

while the wavelength seen by the observer will be:

\lambda' = \frac{v}{f'}=\frac{343 m/s}{2439.2 Hz}=0.141 m

(c) 2517.4 Hz, 0.136 m

In this situation, we must use the most general formula for the Doppler effect, which is

f'=(\frac{v+v_r}{v+v_s})f

where

v_r is the velocity of the observer, which is positive if the observer is moving toward the source, negative otherwise

v_s is the velocity of the source (the ambulance), which is positive if the source is moving away from the observer, negative otherwise

In this situation,

v_s = -26.6 m/s

v_r = +11.0 m/s

Therefore, the frequency heard by the observer is

f'=(\frac{343 m/s+11.0 m/s}{343 m/s-26.6 m/s})(2250 Hz)=2517.4 Hz

while the wavelength seen by the observer will be:

\lambda' = \frac{v}{f'}=\frac{343 m/s}{2517.4 Hz}=0.136 m

You might be interested in
A gyroscope is a wheel or disk that spins rapidly around two or more axes. Question options: True False
vodka [1.7K]
The answer to your question is false
3 0
2 years ago
Read 2 more answers
Two particles, each with charge Q, and a third charge q, are placed at the vertices of an equilateral triangle as shown. The tot
Gelneren [198K]

Answer:

<em>D. The total force on the particle with charge q is perpendicular to the bottom of the triangle.</em>

Explanation:

The image is shown below.

The force on the particle with charge q due to each charge Q = \frac{kQq}{r^{2} }

we designate this force as N

Since the charges form an equilateral triangle, then, the forces due to each particle with charge Q on the particle with charge q act at an angle of 60° below the horizontal x-axis.

Resolving the forces on the particle, we have

for the x-component

N_{x} = N cosine 60° + (-N cosine 60°) = 0

for the y-component

N_{y} = -f sine 60° + (-f sine 60) = -2N sine 60° = -2N(0.866) = -1.732N

The above indicates that there is no resultant force in the x-axis, since it is equal to zero (N_{x} = 0).

The total force is seen to act only in the y-axis, since it only has a y-component equivalent to 1.732 times the force due to each of the Q particles on q.

<em>The total force on the particle with charge q is therefore perpendicular to the bottom of the triangle.</em>

5 0
3 years ago
The index of refraction of light varies from color to color. True or False?
lys-0071 [83]
The index of refraction of light varies from color to color. TRUE.
8 0
3 years ago
Explain how characteristic and traits are related<br>​
jok3333 [9.3K]
Traits are basically your phenotype. They include things like hair color, height, and eye color. Alleles are versions of genes. ... This is a pretty basic idea of how traits and alleles are related.
4 0
2 years ago
How is it technically correct to say that a car making a u-turn can have a constant speed but cannot have a constant velocity?
saw5 [17]

During the "U" part of the turn, the car would follow an approximately circular path, and if it's moving at a constant speed, it would have to accelerate toward the center of the circle in order to change its direction.

5 0
2 years ago
Other questions:
  • Eratosthenes determined the circumference of Earth by conducting an experiment. Put his steps in order as they correlate to the
    9·1 answer
  • A girl with mass m1 and a sled with mass m2 are on the frictionless ice of a frozen lake, a distance d apart but connected by a
    9·1 answer
  • What is the average speed in miles per hour of the car that traveled a total of 200 miles in 5.5 hours
    13·2 answers
  • How is sound detected by the brain
    9·2 answers
  • Jenny puts a book on her desk. she lifts the book up with her finger, using a force of 0.5N .The cover is 10cm wide .
    12·1 answer
  • What factors affect the chemical properties of seawater
    15·1 answer
  • When training to increase physical fitness, adaptation occurs....
    7·2 answers
  • An what is any device that makes work easier<br> by changing the input force.
    12·1 answer
  • AWARDING BRAINLIEST (~ ̄▽ ̄)~
    15·1 answer
  • The tangent line needs to touch 0.6, did i draw it correctly? ​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!