λ=v/f
λ-wavelength
v-speed
f-frequency
we have the wavelength(6.2 x 10^-6meters) and we use the speed of light which is equal to 3*10^8m/s
6.2*10^-6m=3*10^8m/s/f
f=(3*10^8m/s)/(6.2*10^-6)≈0.48*10^14Hz
Btu/(lb-°F) J/(g-°C i mean this is the correct answer
The answer would be 54 m/s as the maximum speed
Answer:
Ptolemy proposed a model, he reference system is centered on the Earth
Copernicus, proposed a deferent system, this system is centered on the Sun, where it is at the origin of the system
Explanation:
Thousands of years ago, Ptolemy proposed a model to explain the movement of the planets and stars in the sky, in this model the reference system is centered on the Earth, so each body is orbiting in different spheres around the Earth as its center, this system had very complicated calculations and curves to be able to explain the orbits of the planets.
More recently Copernicus, proposed a deferent system, this system is centered on the Sun, where it is at the origin of the system, in this system the movement of the planets are ellipses, which is a much simpler explanation and has been widely accepted, in current systems the reference system is fixed in the bodies more massive, since this simplifies the explanation of the movements.
Answer:
Explanation:
The remaining amount of a radioactive isotope is found as the product of the original amount by (1/2) raised to the number of half-lives elapsed. The formla is:
Where M is the remaining amoun, M₀ i s the initial amount, and n is the number of half-lives.
Here, 1/64 of the original carbon-14 remained, meaning that M/M₀ = 1/64.
Then, you can substitute in the equation and solve:
Then, 6 half-lives elapsed since the mastodon died and the remains were dated.
Then, you must multiply 6 by the <em>half-life </em>time:
- 6 × 5730 years = 34,380 years ← answer