Explanation:
It is given that,
Area of nickel wire, 
Resistance of the wire, R = 2.4 ohms
Initial value of magnetic field, 
Final magnetic field, 
Time, t = 1.12 s
Let I is the induced current in the loop of wire over this time. Te emf induced in the wire is given by Faraday's law as :






Induced current in the loop of wire is given by :



So, the induced current in the loop of wire over this time is
. Hence, this is the required solution.
The energy transformations that occur as you coast down long hill on a bicycle, including the brakes to make the bike stop at the bottom, is that at the top of the hill you have high GPE AND LOW KE, on your way down you have HIGH KE AND LOW GPE, and at the bottom you have thermal energy due to the stop of the brakes.
the law of conversation of energy and describe the energy transformations that occur as you coast down a long hill on a bicycle and then apply the brakes to make the bike stop at the bottom.
Answer:
The speed of the 1 kg red ball 8.04 m/s .
Explanation:
Given :
Separation between rods , d = 1.5 m .
Mass of the red ball is 1 kg .
Mass of the orange ball is 5.7 kg .
Angular velocity ,
.
Now , distance of center of mass from red ball is :

We know , speed is given by :

Hence , this is the required solution .
Answer:
205N
Explanation:
The net force (F) is the difference between the applied force(
) and the kinetic frictional force(
). i.e
F =
-
-----------------(i)
Note that;
= μmg
Where;
μ = coefficient of kinetic friction
m = mass of the body
g = acceleration due to gravity = 10m/s²
Equation (i) then becomes;
F =
- μmg -------------------(ii)
<em>Given from question;</em>
m = mass of motorcycle = 150kg
μ = 0.03
= 250N
Substitute these values into equation (ii) as follows;
F = 250 - (0.03 x 150 x 10)
F = 250 - (45)
F = 205N
Therefore, the net force applied to the motorcycle is 205N