(b) is the answer because when the cat jumps on the fridge the gravity is pulling it down so it's less force but when the cat jumps down for the fridge the gravity also pull it down so it go down fast than it go up so it's twice as great (b)
Answer:
Parietal on the first blank and temporal on the second
The height of the projectile is given by:
h = ut - 0.5at²
The height will be 0 twice, once at t = 0 and the second time at the time when the journey has been completed, or t = hang time.
0 = 7.3t - 0.5(9.81)t²
t = 1.49 seconds
Answer:
c) 1.0 kg
Explanation:
The mass of the stick will be located at the centre of the metre rule. Since the rock is located 0.25m from the pivot, the mass of the meter rule is also 0.25m to the Right of the support
According to law of moment
Sum of clockwise moment = sum of anti clockwise moments
Clockwise moment = M×0.25(mass of metre rule is M)
CW moment = 0.25M
Anti clockwise moment = 0.25×1
ACW moments = 0.25kgm
Equate;
0.25M = 0.25
M = 0.25/0.25
M = 1.0kg
Hence the mass of the metre rule is 1.0kg
Answer:
a) w = 9.599 10⁴ rad / s
, b) v = 3.35 10¹⁶ m / s
, c) a = 3.22 10²¹ m / s²
Explanation:
For this exercise we must use the relation of angular kinematics
a) angular velocity, the distance remembered in orbit between time (period)
w = 2π r / T
w = 2 π 3.59 10¹¹ / 2.35 10⁷
w = 9.599 10⁴ rad / s
b) linear and angular velocity are related by the equation
v = w r
v = 9,599 10⁴ 3.49 10¹¹
v = 3.35 10¹⁶ m / s
c) the centripetal acceleration is
a = v² / r = w² r
a = (9,599 10⁴)² 3.49 10¹¹
a = 3.22 10²¹ m / s²