Answer:
(a) The resistance of 25m of wire is 3 ohms
(b) the length of this wire that has resistance 22 ohms is 183.33 m
Explanation:
Given;
resistivity of the wire, ρ = 0.12 ohms per meter
(a) The resistance of 25m of wire is calculated as follows;

(b) the length of this wire that has resistance 22 ohms is calculated as;

The tension in the string with friction would be the biggest because of the involvement of the force of gravity. This would result in that the friction force that is acting on the system. There is no friction in the frictionless system, and only the force of gravity is relevant.
<span>Assuming continuous operation (24/7), we can say that
Energy produced : Energy per hour * 24 (number of hours in a day) - 365 (number of days in a year.
Energy per hour: 2050 * 1.055 = 2162.75 kg.
So, we proceed to calculate the results
E: 2162.75 * 24 * 365 = 18,945,690 kj per year.
Now, we transform kj to megajoule, remembering that kilo is 10*3 and mega is 1'*6, so we divide the result by 1,000 in order to get the results in megajoules, and the answer would be:
18,945.69 megajoules can be produced per year.</span>
Mass is the same, weight is less
<h3>What is the Weight and mass on Moon ?</h3>
As we know that the mass of the object is the measurement of the quantity of the matter that is present in it
So here we can say that if the mass of the object is m then its total quantity of the matter that is present in it is given as
mass = (density) × (volume)
Now for the weight of the object is defined as the force of gravity due to planet
Fg = mg
so the weight of the object is depending on the acceleration due to gravity of the planet
As we know that the gravity of moon is smaller than the gravity of the earth so here weight on the moon will be smaller than the weight on the Earth
Learn more about Weight on Moon here:
brainly.com/question/4080619
#SPJ4