1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
3 years ago
14

A rigid tank contains 7 kg of an ideal gas at 5 atm and 30c. a valve is opened, and half of mass of the gas can escape. the fin

al pressure in the tank is 1.5 atm.calculate the final temperature in the tank.
Physics
2 answers:
Kruka [31]3 years ago
8 0

Answer:

The final temperature of the tank is 181.8 K.

Explanation:

We use ideal gas equation to calculate the final temperature.

And volume remain constant for the given process.  

Further Explanation:

The ideal gas equation is  

PV= mRT

Here,  

P is the pressure,  

V is the volume,  

T is the temperature  

R is the gas constant  

m is the mass of the gas.

The gas equation for the initial state can be written as  

P_{1} V_{1} =m_{1} R T_{1}  

For final state gas equation becomes,

[ P_{2} V_{2} =m_{2} R T_{2}

During the process volume remain constant,

so V_{1} =V_{2} =constant

From both the above equations, we get

\frac{P_{1} }{P_{2} } = \frac{m_{1}T_{1} }{m_{1}T_{2} }

Given: m_{1} = 7kg, m_{2}  =3.5 kg, P_{1} =5 atm, P_{2} = 1.5 atm  and T_{1} = 30^{0} C

Substituting the given values, we get

\frac{5}{1.5}=\frac{(7)(303)}{(3.5)T_{2} }

So final temperature,

T_{2}=  181.8 K

Learn more:

https://brainly.in/question/2663978

Key word:

Ideal gas equation, Isochoric process.  

Readme [11.4K]3 years ago
6 0
The equation of state for an ideal gas is
pV=nRT
where p is the gas pressure, V the volume, n the number of moles, R the gas constant and T the temperature.

The equation of state for the initial condition of the gas is
p_1 V_1 = n_1 R T_1 (1)
While the same equation for the final condition is
p_2 V_2 = n_2 R T_2 (2)

We know that in the final condition, half of the mass of the gas is escaped. This means that the final volume of the gas is half of the initial volume, and also that the final number of moles is half the initial number of moles, so we can write:
V_1 = 2 V_1
n_1 = 2 n_2
If we substitute these relationship inside (1), and we divide (1) by (2), we get
\frac{p_1}{p_2} = \frac{T_1}{T_2}

And since the initial temperature of the gas is T_1 = 30 C=303 K, we can find the final temperature of the gas:
T_2 = T_1  \frac{p_2}{p_1}=(303 K) \frac{1.5 atm}{5.0 atm}=90.9 K
You might be interested in
Joe follows the procedure below to make a compass.
Anna [14]
The answer would be C.

8 0
2 years ago
Read 2 more answers
A 3.8kw elective motor powers an inclined conveyer belt. It is designed to lift heavy boxes from the warehouse floor to loading
zhannawk [14.2K]

Answer:

See the answers below

Explanation:

To solve this problem we must use the definition of power and work in physics.

a)

The function of the conveyor belt is to carry the boxes from an initial point that is at low altitude to an end point that is at high altitude. In this way the conveyor belt prints a speed to the box to be able to raise it to the required vertical distance.

Since we have a velocity at the beginning and then we place the box at a high position, where then the box remains at rest, we can say that it converts kinetic energy to potential energy.

b)

Power is defined as the relationship of work over time. Therefore we have:

P=W/t

where:

P = power = 3.8 [kW] = 3800 [W]

W = work [J]

t = time = 14 [s]

W=P*t\\W=3800*14\\W= 53200[J] = 53.2[kJ]

c)

Since the given time is equal to the given time at Point b, we can use the same work calculated.

We know that work is defined as the product of force by the distance traveled.

W =F*d

So, the force is equal to:

F=W/d\\F=53200/5.3\\F=10037.73[N]

Now we know that force is defined as the product of mass by gravitation acceleration.

F =m*g

where:

F = force or weight = 10037.73 [N]

g = gravity acceleration = 9.81 [m/s²]

m = mass [kg]

m=F/g\\m = 10037.73/9.81\\m = 1023.2 [kg]

d)

This part can be solved by means of the energy conservation theorem, where the potential energy is transformed into kinetic energy or vice versa.

E_{pot}=m*g*h = E_{kin}=0.5*m*v^{2}

where:

h = elevation = 4.7 [m]

v = velocity [m/s]

m*g*h=0.5*m*v^{2}\\g*h=0.5*v^{2} \\v=\sqrt{\frac{g*h}{0.5} } \\v=\sqrt{\frac{9.81*4.7}{0.5} }   \\v = 9.6 [m/s]

7 0
2 years ago
A 25 N force stretches a spring 280 cm. What was the spring constant? ​
boyakko [2]

Answer:

  1. F= 25N
  2. ∆l=280cm
  3. K=?
  4. you apply the formula = K:F/∆l
  5. = 0,089N/cm
4 0
2 years ago
Read 2 more answers
What causes the inner core to be solid?
natima [27]
Your answer will be (B) - intense pressure.
4 0
2 years ago
these are the types of attractions found between molecules. their strength determines the state of the substance at room tempera
Elina [12.6K]
<h2>Answer</h2>

The physical state of the elements depends upon the <u>attraction forces </u>and their <u>kinetic energy</u>.

<h2>Explanation</h2>

The elements or substances are fixed with each other with the help of different chemical forces including ionic bonding, covalent bonding, H- bonding etc. The strength of these forces is also one of the factors that affect their physical natures. For example, covalent or ionic bonds are the strongest bonds than all other bonds and metals that contain these forces are mostly in solid form. The kinetic motion of electrons in the element also affects the physical state of the element and potential of bonding.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A worker does 500 J of work on a 10 kg box.If the box transfers 375 J of heat to the floor through the friction between the box
    6·1 answer
  • A certain car is accelerating at 5.0 km/h/s. Explain what is happening to the motion of the car.
    15·1 answer
  • Un movil pasa por el punto A en direccion hacia B (350cm más adelante) y, luego, sigue hasta el punto C. Sabiendo que pasa por B
    12·1 answer
  • Describe Ohm's law and its limitations;
    14·1 answer
  • The velocity v(t) of a particle as a function of time is given by v(t) = (2.3 m/s) + (4.1 m/s2)t - (6.2 m/s3)t2. What is the ave
    5·1 answer
  • What is damping??????​
    5·2 answers
  • To test the strength of a retainment wall designed to protect a nuclear reactor,
    14·1 answer
  • A kind of tempory magnet​
    7·2 answers
  • Transfer payments are used to redistribute money to various segments of society. please select the best answer from the choices
    11·1 answer
  • What is the mass of a bullet moving at 970 m/s if the bullet’s kinetic energy is 3.0 x 10^3 J?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!