Answer:
<em>Aim at the base of the fire and use short bursts until the fire is out.</em>
<em></em>
Explanation:
Fire extinguishers use CO2 (Carbondioxide) as the extinguishing agent. This is because CO2 is denser than air, and does not support combustion.
Aiming at the base of the fire causes the CO2 to fall on the base of the fire, where the source of the fire is, trapping it, and preventing it from further reacting with air in a combustion reaction. Also, the short burst creates a strong wind that forces the flame to blow out.
Explanation:
This how you do it..
Calculate Watt-hours Per Day. Device Wattage (watts) x Hours Used Per Day = Watt-hours (Wh) per Day. ...
Convert Watt-Hours to Kilowatts. Device Usage (Wh) / 1000 (Wh/kWh) = Device Usage in kWh. ...
Find Your Usage Over a Month.
Answer:
Explanation:
Given that,
Initial angular velocity is 0
ωo=0rad/s
It has angular velocity of 11rev/sec
ωi=11rev/sec
1rev=2πrad
Then, wi=11rev/sec ×2πrad
wi=22πrad/sec
And after 30 revolution
θ=30revolution
θ=30×2πrad
θ=60πrad
Final angular velocity is
ωf=18rev/sec
ωf=18×2πrad/sec
ωf=36πrad/sec
a. Angular acceleration(α)
Then, angular acceleration is given as
wf²=wi²+2αθ
(36π)²=(22π)²+2α×60π
(36π)²-(22π)²=120πα
Then, 120πα = 8014.119
α=8014.119/120π
α=21.26 rad/s²
Let. convert to revolution /sec²
α=21.26/2π
α=3.38rev/sec
b. Time Taken to complete 30revolution
θ=60πrad
∆θ= ½(wf+wi)•t
60π=½(36π+22π)t
60π×2=58πt
Then, t=120π/58π
t=2.07seconds
c. Time to reach 11rev/sec
wf=wo+αt
22π=0+21.26t
22π=21.26t
Then, t=22π/21.26
t=3.251seconds
d. Number of revolution to get to 11rev/s
∆θ= ½(wf+wo)•t
∆θ= ½(0+11)•3.251
∆θ= ½(11)•3.251
∆θ= 17.88rev.
They both have a certain force. They are different because that force is different