Answer:
A. DT is given by Q= MCs DT
m = mass of the substances
Cs= is it's specific heat capacity
Ck= <u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>Q</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Mk ×DTk
=<u>2</u><u>5</u><u>0</u><u> </u><u>×</u><u> </u><u>9</u><u> </u><u>×</u><u> </u><u>5</u><u> </u><u> </u>
129
=Dt = 180.1085271
answer is 180degree C.
Explanation:
B. = <u>2</u><u>5</u><u>×</u><u>1</u><u>0</u> ×100
1.082
=<u>2</u><u>5</u><u>0</u><u>0</u>
1.082
= 23105.360 g/kj.
Answer:
ksjsnjsnsjsjjsjdjd dsjsjv sbsbbsbshdi udhudushsjjd dydyshyehehwheuwuwe dydyshyehehwheuwuwe what's he dudj
Answer:
a. 4.9 m
Explanation:
To solve this problem we must take into account that power is defined as the relationship between the work and the time in which the work is done.
P = W/t
where:
P = power = 95 [W] (units of watts)
W = work [J] (units of Joules)
t = time = 6.2 [s]
We can clear the work from the previous equation.
W = P*t
W = 95*6.2 = 589 [J]
Now we know that the work is defined by the product of the force by the distance, therefore we can express the work done with the following equation.
W = F*d
where:
F = force = 120 [N] (units of Newtons)
d = distance [m]
d = W/F
d = 589/120
d = 4.9 [m]
Answer:
b. 48.0 g.
Explanation:
Given;
mass of the exoplanet, 
radius of the exoplanet, 
The acceleration due to gravity of the planet is calculated as;

Therefore, the correct option is b. 48.0 g