Answer:
a). 53.78 m/s
b) 52.38 m/s
c) -75.58 m
Explanation:
See attachment for calculation
In the c part, The negative distance is telling us that the project went below the lunch point.
The main difference is the source of the sediment that the rock is formed from. Clastic sedimentary rocks are formed mostly from silicate sediment derived by the breakdown of pre-existing rocks. Bioclastic rocks are formed by the accumulation of fragmented organic remains (such as shell-sand) - i.e. the sediment is of biological rather than non-biological origin.
Answer:
658.16N
Explanation:
Step one:
given data
mass m= 235kg
Force F= 760N
angle= 30 degrees
Required
The horizontal component of the force
Step two:
The horizontal component of the force
Fh= 760cos∅
Fh=760cos30
Fh=760*0.8660
Fh=658.16N
Answer:
1020g
Explanation:
Volume of can=

Mass of can=80g=
1Kg=1000g
Density of lead=
By using 
We have to find the mass of lead which shot can it carry without sinking in water.
Before sinking the can and lead inside it they are floating in the water.
Buoyancy force =

Where
Density of water
Mass of can
Mass of lead
Volume of can
Substitute the values then we get




Hence, 1020 grams of lead shot can it carry without sinking water.
Answer:
a) The magnitude of the force is 968 N
b) For a constant speed of 30 m/s, the magnitude of the force is 1,037 N
Explanation:
<em>NOTE: The question b) will be changed in other to give a meaningful answer, because it is the same speed as the original (the gallons would be 1.9, as in the original).</em>
Information given:
d = 106 km = 106,000 m
v1 = 28 m/s
G = 1.9 gal
η = 0.3
Eff = 1.2 x 10^8 J/gal
a) We can express the energy used as the work done. This work has the following expression:

Then, we can derive the magnitude of the force as:

b) We will calculate the force for a speed of 30 m/s.
If the force is proportional to the speed, we have:
