To Tell how much of each reactant will be used in a reaction, we need to find which reactant is the Limiting Reagent.
All the reactants will be consumed in equal amount as that of L.R.
The values of x represents that number of moles of water molecules that is present per mole of the salt magnesium sulfate. To determine the value for this, we need to know how much is the water that is lost after heating the sample assuming that all of the water molecules are evaporated leaving only the unhydrated form of the salt. We calculate as follows:
Mass of hydrated salt = 3.484 g
Mass after heating = 1.701 g
Mass lost = 3.484 g - 1.701 g = 1.783 g
The mass lost is equal to the mass of water lost.
Moles water lost = 1.783 g ( 1 mol / 18.02 g ) = 0.0989 mol H2O
Moles of unhydrated salt = 1.701 g ( 1 mol / 120.37 g ) = 0.0141 mol MgSO4
moles water / moles MgSO4 = 0.0989 mol H2O / 0.0141 mol MgSO4 = 7
Therefore, the value of x is 7.
Yes because of the gas combination.
Answer:
The answer is "Choice A and Choice B"
Explanation:
The Zero-Order reactions are usually found if a substrate, like a surface or even a catalyst, is penetrated also by reactants. Its success rate doesn't depend mostly on the amounts of the various reaction in this reaction.
Let the Rate = k
As
doesn't depend on reaction rate, a higher reaction rate does not intensify the reaction.
By the rate
the created based and the reaction rate is about the same.
By dividing the percentage composition with the molar mass of that element we will get the empirical formula. Then using that empirical formula and formula mass we can find the molecular formula.
<u>Explanation:</u>
The chemical properties of any substance are defined obviously by the different types and relative amounts of atoms constituting its primary entities (in case of covalent compounds the primary entities are molecules and ions in the event of ionic compounds).
A percent composition of any compound gives the mass percent of each element present in the compound; in addition to that frequently it is determined experimentally and utilized to derive an empirical formula of any compound. An empirical formula mass of any covalent compound could be comparable with the molar or molecular mass of a compound to acquire a molecular formula.