1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slega [8]
3 years ago
9

The law of conservation of momentum states that the total momentum of interacting objects does not change . This means the total

momentum a collision or explosion is equal to the total momentum a collision or explosion.what is momentum
Physics
1 answer:
pickupchik [31]3 years ago
4 0

Answer:

The momentum of an object is equal to the product of its mass and its velocity.

Explanation:

Consider an object of mass m travelling at a velocity \vec{v}. The momentum \vec{p} of this object would be:

\vec{p} = m \cdot \vec{v}.

For the law of conservation of momentum, consider two objects: object \rm a and object \rm b. Assume that these two objects collided with each other.

  • Let m_{\rm a} and m_{\rm b} denote the mass of the two objects.
  • Let \vec{v}_{\rm a}(\text{initial}) and \vec{v}_{\rm b}(\text{initial}) denote the velocity of the two object right before the interaction.
  • Let \vec{v}_{\rm a}(\text{final}) and \vec{v}_{\rm b}(\text{final}) denote the velocity of the two objects right after the interaction.
  • The momentum of the two objects right before the collision would be m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) and m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}), respectively.
  • The momentum of the two objects right after the collision would be m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) and m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final}), respectively.

The sum of the momentum of the two objects would be:

  • m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}) right before the collision, and
  • m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final}) right after the collision.

Assume that the system of these two objects is isolated. By the law of conservation of momentum, the sum of the momentum of these two objects should be the same before and after the collision. That is:

m_{\rm a}\cdot \vec{v}_{\rm a}(\text{initial}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{initial}) = m_{\rm a}\cdot \vec{v}_{\rm a}(\text{final}) + m_{\rm b}\cdot \vec{v}_{\rm b}(\text{final}).

You might be interested in
A 25,000 kg traveling east collides with a 2,000 kg truck standing still on the tracks. After the collision the train and truck
Elis [28]

Answer:

24.084 m/s

Explanation:

From the law of conservation of linear momentum

Total momentum before collision equals to the total momentum after collision

Since momentum=mv where m is mass and v is velocity

M_{truck}V_{truck}=V_{common}*(M_{truck} +M_{standing}) where M_{truck} is the mass of the truck, V_{truck} is velocity of the truck, V_{common} is the common velocity of moving and standing truck after collision and M_{standing} is the mass of the standing truck

Making V_{truck} the subject we obtain

V_{truck}=\frac { V_{common}*(M_{truck} +M_{standing})}{M_{truck}}

Substituting M_{truck} as 25000 Kg, V_{common} as 22.3 m/s, M_{standing} as 2000 Kg we obtain

V_{truck}=\frac { 22.3 m/s *(25000 Kg +2000 Kg)}{25000}= 24.084 m/s

Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive

The truck was moving at 24.084 m/s

3 0
3 years ago
A hiker climbs a mountain. Starting at the base of the mountain, he first moved up 520m at a 32.0 degree angle. What is the fina
balu736 [363]

Answer:

\displaystyle \vec{d}=

Explanation:

<u>Displacement Vector</u>

Suppose an object is located at a position  

\displaystyle P_1(x_1,y_1)

and then moves at another position at

\displaystyle P_2(x_2,y_2)

The displacement vector is directed from the first to the second position and can be found as

\displaystyle \vec{d}=

If the position is given as magnitude-angle data ( z , α), we can compute its rectangular components as

\displaystyle x=z\ cos\alpha

\displaystyle y=z\ sin\alpha

The question describes the situation where the initial point is the base of the mountain, where both components are zero

\displaystyle P_1(0,0)

The final point is given as a 520 m distance and a 32-degree angle, so  

\displaystyle x_2=520\ cos32^o= 440.99\ m

\displaystyle y_2=520\ sin32^o=275.6\ m

The displacement is

\displaystyle \vec{d}=

5 0
3 years ago
Consider the situation||: A child pulls a sled by a rope across the lawn at a constant speed. Of the forces listed, identify whi
Mice21 [21]

Answer:

Gravitational

Tension

Normal

Friction.

Explanation:

The forces acting on the sled are:

Tension: the tension from the rope, this is the force that "moves" the sled.

Friction: kinetic friction between the sled and the ground as the sled moves.

There are another two forces that also act on the sled, but that "has no effect"

Gravitational force: This force pulls the sled down, against the floor.

Normal force: This force "opposes" to the gravitational one, so they cancel each other.

These two forces cancel each other, so they have no direct impact on the movement of the sled. BUT, the friction force depends on the weight of the moving object, and the weight of the moving object depends on the gravitational force, so we need gravitational force in order to have friction force.

Then we can conclude that the forces acting on the sled are:

Gravitational

Tension

Normal

Friction.

6 0
2 years ago
A bird flies north with a force of 11N, the air resistance is 2N. How do i do a diagram of this?
Novay_Z [31]
This is a diagram from above, the air resistance is oppose to movement, the bird is moving forward given its force is bigger.

7 0
3 years ago
How much Hydrogen (H) atoms are in this 5NH4Cl?
Jobisdone [24]

Answer:

5

Explanation:

8 0
2 years ago
Other questions:
  • How many grams of oxygen (O2), x, are needed to react with the 700 g of iron to produce 1000 g of iron (III) oxide, Fe2O3?
    6·1 answer
  • There are two balloons of charges +3.37 x 10-6 C and –8.21 x 10-6 C. The distance between the two balloons is 2.00 m. Determine
    13·1 answer
  • In an oscillating lc circuit, when 75.0% of the total energy is stored in the inductor's magnetic field, (a) what multiple of th
    14·1 answer
  • To understand the concept of intensity; the relationship between the power of the source and the intensity of the wave; and the
    11·1 answer
  • Which of the following is a legal requirement for boat operation?
    13·1 answer
  • Robert Hook discovered cells when viewing a _____ under a microscope.
    9·2 answers
  • Mass is directly or indirectly related to inertia?
    10·2 answers
  • Which statement correctly describes a characteristic that a scientific measuring tool should have
    10·1 answer
  • If 14:15=42:x find the value of x​
    7·2 answers
  • A hypothetical planet has a mass 2.81 times that of Earth, but the same radius.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!