1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
3 years ago
13

What is the average speed in miles per hour of the car that traveled a total of 200 miles in 5.5 hours

Physics
2 answers:
Amanda [17]3 years ago
4 0

Answer:

Average speed of the car is 36.36 miles per hour

Explanation:

It is given that,

Total distance traveled by the car, d = 200 miles

Total time taken, t = 5.5 hours

In this case, we have to find the average speed of the car. Average speed of the car is defined as the total distance divided by total time taken. Mathematically, it can be written as :

s=\dfrac{d}{t}

s=\dfrac{200\ miles}{5.5\ hours}    

s = 36.36 miles per hour

Hence, the average speed of the car is 36.36 miles per hour.                                 

slega [8]3 years ago
3 0
36 miles per hour becuase if you do 200 divied by the hours your get 36 which is the speed
You might be interested in
As objects grow farther apart, what happens to the force of gravity between them?
Papessa [141]
It decreses Decreases
8 0
3 years ago
What is electrons ? explain it function<br>​
Neko [114]

Answer:

The electron is a subatomic particle, symbol e⁻ or β⁻ , whose electric charge is negative one elementary charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure

Explanation:

functions of electrons

and electrons being the negatively charged particles of atom. Together, all of the electrons of an atom create a negative charge that balances the positive charge of the protons in the atomic nucleus

7 0
3 years ago
Read 2 more answers
Explain how the basic unit are combined to give the derived units of force, velocity, pressure and work
LuckyWell [14K]

Velocity:

Velocity is change in displacement with respect to time:

\frac{\Delta x}{\Delta t}

Analysing the units, meters (displacement) and seconds (time) are basic units:

\frac{m}{s}

Therefore the unit of velocity is m/s

Force:

Newton's second law of motion:

F = ma

Kilogram (mass) is a basic unit, and accelerations unit can be found using the equation:

a=\frac{\Delta v}{\Delta t}

Analysing the units:

\frac{\frac{m}{s}}{s}=\frac{m}{s^2}

Therefore, the unit of force is:

kg\frac{m}{s^2}

Pressure:

Pressure is given by the equation:

P=\frac{F}{S} where S is area of effect, F is force

Area for a basic rectangle (geometric shape is arbitrary for dimensional analysis) is found by multiplying two lengths:

[l^2]=m^2, the unit of area

Dividing the aforementioned unit of force by the unit of area:

\frac{kg\frac{m}{s^2}}{m^2}=\frac{kg}{ms^2}, the unit of pressure

Work:

Work is given by the equation:

W=\vec{F}\cdot \vec{x}, (dot product may be assumed as normal multiplication for the purposes of unit analysis)

Knowing displacement's (x) unit is m:

[W]=\frac{kgm}{s^2}m=\frac{kgm^2}{s^2}, the unit of work.

3 0
3 years ago
How many types of quarks are there?<br> a. 2<br> b. 4<br> c. 6<br> d. 8
Nostrana [21]
There are 6 types of quarks.

Answer: C. 6
8 0
3 years ago
Read 2 more answers
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
3 years ago
Other questions:
  • Irina finds an unlabeled box of fine needles, and wants to determine how thick they are. A standard ruler will not do the job, a
    9·1 answer
  • If an object starting from rest and position d o = 0 attains a velocity of 20 m/s at d = 50 m, calculate the acceleration requir
    9·1 answer
  • A girl and boy pull in opposite directions on a stuffed animal. The girl exerts a force of 3.5 N. The mass of the stuffed animal
    13·2 answers
  • What is the total negative charge, in coulombs, of all the electrons in a small 0.900 g sphere of carbon? one mole of c is 12.0
    15·1 answer
  • N 1800kg car has an<br> of 3.8m/s? What is it<br> on the car?<br> acceleration<br> force acting
    13·1 answer
  • A ball is thrown upward. At a height of 10 meters above the ground, the ball has a potential energy of 50 joules (with the poten
    7·1 answer
  • A boxer punches a sheet of paper in midair and brings it from rest up to a speed of 30 m/s in 0.060 s .
    8·1 answer
  • Một vô lăng sau khi bắt đầu quay được một phút thì thu được vận tốc 700
    10·1 answer
  • A truck brakes from 15 m/s to 2 m/s in 15 seconds. What is its acceleration?
    15·1 answer
  • A boat travels at 17mi/h for 1.50h. How far does the boat travel?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!