1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
3 years ago
11

(I) A hiker determines the length of a lake by listening for the echo of her shout reflected by a cliff at the far end of the la

ke. She hears the echo 2.5 s after shouting. Estimate the length of the lake.
Physics
1 answer:
xxMikexx [17]3 years ago
4 0

Answer:

425 m

Explanation:

From the question,

v = 2x/t.................... Equation 1

Where v = speed of sound in air, x = Length of the lake, t = time.

make x the subject of the equation

x = vt/2............... Equation 2

Given: t = 2.5 s

Constant: v = 340 m/s.

Substitute these values into equation 2

x = 340(2.5)/2

x = 425 m.

Hence the length of the lake is 425 m

You might be interested in
Why does a stream or river change direction when going down a steep mountain
ziro4ka [17]

Answer:

gravity

Explanation:

6 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
A 2.0 kg block has a rope attached to the block on a table and is pulled with a force of 8.0 N. The block accelerated at 2.5m/s^
Masja [62]

Answer:

0.15

Explanation:

Assuming the rope is horizontal, sum the forces in the y direction:

∑F = ma

N − mg = 0

N = mg

Sum the forces in the x direction:

∑F = ma

F − Nμ = ma

Substitute:

F − mgμ = ma

mgμ = F − ma

μ = (F − ma) / (mg)

Plug in values:

μ = (8.0 N − 2.0 kg × 2.5 m/s²) / (2.0 kg × 9.8 m/s²)

μ = 0.15

3 0
2 years ago
Which of the folltrue or false: the ratio of heat exchange in conduction is independent of exposure time.owing techniques uses e
Sliva [168]

True conditions

Efficiency of Heat Exchanger are as below:

the heat exchange process between two fluids with different temperatures using solid walls occurs in various engineering applications. The tool to achieve this exchange is a heat exchanger. Some applications like air conditioning, power generation, waste heat recovery, and chemical processing use this device.

The basis of the work of a heat exchanger is that the hot fluid enters the heat exchanger at temperature T1 and its heat capacity is Chot. Also, the cold fluid with the heat capacity of Ccold enters temperature t1; in the meantime, the hot fluid loses its heat, and its temperature drops to T2. It delivers heat to the cold fluid to increase its temperature to t2 and leave the heat exchanger at this temperature.

To learn more about Heat Exchanger

brainly.com/question/22595817

#SPJ4

6 0
1 year ago
If an element an atomic number of 32 and a mass of 72, how many neutrons does it have?
weqwewe [10]

Answer:

41

Explanation:

and your welcome

3 0
2 years ago
Other questions:
  • The mercalli scale is a scale from ________.
    14·1 answer
  • An object is placed 11.0 cm in front of a concave mirror whose focal length is 24.0 cm. The object is 2.60 cm tall. What is the
    10·1 answer
  • A block of wood mass 0.60kg is balanced on top of a vertical port 2.0m high. A 10gm bullet is fired horizontally into the block
    7·1 answer
  • You perform the Hooke's Law experiment and create a plot of Displacement vs. Force. You add a linear fit and find the following
    8·1 answer
  • A CD spins at a constant angular velocity of 5.0 revolutions per second clockwise.
    10·1 answer
  • Why are viruses hard to fight
    10·1 answer
  • What type of reaction occurs when an egg cooks in a pan?
    14·2 answers
  • Choose whether each of the following statements is true or false
    10·1 answer
  • A circular disk of radius 2.0 m rotates, starting from rest, with a constant angular acceleration of 20.0 rad/s2 . What is the t
    11·1 answer
  • Una barra de aluminio que esta a 78 GRADOS CENTIGRADOS entra en contacto con una barra de cobre de la misma longitud y área que
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!