Answer:
X₃₁ = 0.58 m and X₃₂ = -1.38 m
Explanation:
For this exercise we use Newton's second law where the force is the Coulomb force
F₁₃ - F₂₃ = 0
F₁₃ = F₂₃
Since all charges are of the same sign, forces are repulsive
F₁₃ = k q₁ q₃ / r₁₃²
F₂₃ = k q₂ q₃ / r₂₃²
Let's find the distances
r₁₃ = x₃- 0
r₂₃ = 2 –x₃
We substitute
k q q / x₃² = k 4q q / (2-x₃)²
q² (2 - x₃)² = 4 q² x₃²
4- 4x₃ + x₃² = 4 x₃²
5x₃² + 4 x₃ - 4 = 0
We solve the quadratic equation
x₃ = [-4 ±√(16 - 4 5 (-4)) ] / 2 5
x₃ = [-4 ± 9.80] 10
X₃₁ = 0.58 m
X₃₂ = -1.38 m
For this two distance it is given that the two forces are equal
The correct answer of this question is : A) Change alternating current into direct current.
EXPLANATION :
As per the question, we are given vacuum tube. Vacuum tube can be of various types. Normally it contains two electrodes called cathode and anode which are enclosed in an evacuated glass chamber . There are also other types of vacuum tubes which contain extra electrodes like control grid .
The vacuum tube can be used as a rectifier. It means that it can be used as an electronic device which will convert alternating current into direct current. It may be a half wave rectifier or a full wave rectifier. Actually the direct current obtained during the rectification of alternating current is pulsating in nature.
Hence, the correct answer is that a vacuum tube can be used to change alternating current into direct current.
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
Yes, the above-given statement is true
<u>Explanation:</u>
- The product of the mass x the velocity will be the same for both. Momentum is the action of a body with a particular mass through space and there is the conservation of momentum.
- Momentum is described as the mass of the object multiplied by its velocity.
- <u>Momentum (p) = Mass (M) * Velocity (v)</u>
- Therefore for two objects with many masses to have a similar momentum, then the lighter one has to be moving quicker than the heavier object.
Answer:
As point B is located inside the copper block so net electric field at point B is j.
Explanation:
Consider the figure attached below. The net electric field at location B,that is inside the copper block is zero because when a conductor is charged or placed in an electric field of external charges, net charge lies on the surface of conductor and there is no electric field inside the conductor. As point B is located inside the copper block so net electric field at point B is zero as well direction of net electric field at point B is zero.