Answer:
<h2>32m/s^2</h2>
Explanation:
We want to find the acceleration based on the given data
Given
distance s=400m
time t= 5s
u= 0m/s since it started from rest
We apply the following expression
s=ut+1/2at^2
substituting we have
400=0*5+1/2*a(5)^2
400=25a/2
cross multiply
25a=400*2
25a=800
divide both sides by 25 we have
a=800/25
a=32m/s^2
The acceleration is 32m/s^2
Answer:
The speed of the sound wave on the string is 545.78 m/s.
Explanation:
Given;
mass per unit length of the string, μ = 4.7 x 10⁻³ kg/m
tension of the string, T = 1400 N
The speed of the sound wave on the string is given by;

where;
v is the speed of the sound wave on the string
Substitute the given values and solve for speed,v,

Therefore, the speed of the sound wave on the string is 545.78 m/s.
Given conditions:
height of object = 7.5cmdistance of object from mirror = 14 cmfocus length = -7 cmimage distance = ?
Using mirror formula:
1/(focus length) = 1/(object distance) + 1/(image distance)
or, -1/7 = 1/14 + 1/(image distance)
or, image distance = -4.66cm (the image formed is a virtual image)
Also, magnification of image is:
image height /height of object = - image distance /object distance
or, image height = - image distance / object distance * height of object
or, image height = -(-4.66) / 14 * 7.5 = 2.49 = 3(nearest whole number)
Answer:
2+ charge
Explanation: The alkaline earth metals have two valence electrons in their highest-energy orbitals (ns2). They are smaller than the alkali metals of the same period, and therefore have higher ionization energies. In most cases, the alkaline earth metals are ionized to form a 2+ charge
Hope this helps, have a great day :)