If the mass of the object and the volume of the object is determined;
Then, the density of the object is determined by taking the ratio of the mass and volume.
<h3>What is density of an object?</h3>
The density of an object is the ratio of the mass and volume of that object.
Mathematically;
To determine the density of an object therefore, the physical characteristics of mass and the volume of the object are measured.
The mass of the object is obtained using a scale or a balance.
The volume of the object if a solid is obtained using a displacement bottle. If it is a liquid, a measuring cylinder is used.
The density of the object is then obtained by taking the ratio of the mass and the volume of the object.
In conclusion, the density of an object is determined from the volume and mass ratio.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
58.5 m
Explanation:
First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.
The initial vertical velocity of the ball is

where
u = 21.5 m/s is the initial speed
is the angle
Substituting,

The vertical position of the ball at time t is given by

where
h = 13.5 m is the initial heigth
is the acceleration of gravity (negative sign because it points downward)
The ball reaches the water when y = 0, so

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.
The horizontal velocity of the ball is

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:

Answer:
B. - 0.328
Explanation
Potential Energy:<em> This is the energy of a body due to position.</em>
<em>The S.I unit of potential energy is Joules (J).</em>
<em>It can be expressed mathematically as</em>
<em>Ep = mgh........................... Equation 1</em>
<em>Where Ep = potential energy, m = mass of the coin, h = height, g = acceleration due to gravity,</em>
<em>Given: m = 2.74 g = 0.00274 kg, h = 12.2 m, g = 9.8 m/s²</em>
Substituting these values into equation 1
Ep = 0.00274×12.2×9.8
Ep = 0.328 J.
Note: Since the potential energy at the surface is zero, the potential Energy with respect to the surface = -0.328 J
The right option is B. - 0.328
<em />
Answer:
1.28 x 10^4 N
Explanation:
m = 1500 kg, h = 450 km, radius of earth, R = 6400 km
Let the acceleration due to gravity at this height is g'
g' / g = {R / (R + h)}^2
g' / g = {6400 / (6850)}^2
g' = 8.55 m/s^2
The force between the spacecraft and teh earth is teh weight of teh spacecraft
W = m x g' = 1500 x 8.55 = 1.28 x 10^4 N