1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
6

For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea

sures the magnitude of the heat flux at 3cmr= as 40 W/m2. Assume that the temperature distribution is steady and depends only on the radial coordinate. Under the hypothesis that the thermal conductivity is independent of temperature, what is k if a) the inner and outer radii
Engineering
1 answer:
miskamm [114]3 years ago
7 0

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

You might be interested in
A heat pump designer claims to have an air-source heat pump whose coefficient of performance is 1.8 when heating a building whos
Anit [1.1K]

Answer:

The claim is valid.

Explanation:

Let assume that heat pump is reversible. The coefficient of performance for the heat pump is:

COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}

COP_{HP} = \frac{300\,K}{300\,K-260\,K}

COP_{HP} = 7.5

The claim is valid as real heat pumps have lower coefficients of performance.

3 0
3 years ago
Joinn my zo om lets play some blookets<br> 98867 708157<br> 9dPQPW
pav-90 [236]

Answer:k

Explanation:

6 0
3 years ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
abruzzese [7]

Answer:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The net work per cycle is 845.88 kJ/kg

The power developed in horsepower ≈ 45374 hP

Explanation:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The dimension of the cylinder bore diameter = 3.7 in. = 0.09398 m

Stroke length = 3.4 in. = 0.08636 m.

The volume of the cylinder v₁= 0.08636 ×(0.09398²)/4 = 5.99×10⁻⁴ m³

The clearance volume = 16% of cylinder volume = 0.16×5.99×10⁻⁴ m³

The clearance volume, v₂  = 9.59 × 10⁻⁵ m³

p₁ = 14.5 lbf/in.² = 99973.981 Pa

T₁ = 60 F = 288.706 K

\dfrac{T_{2}}{T_{1}} = \left (\dfrac{v_{1}}{v_{2}}  \right )^{K-1}

Otto cycle T-S diagram

T₂ = 288.706*6.25^{0.393} = 592.984 K

The maximum temperature = T₃ = 5200 R = 2888.89 K

\dfrac{T_{3}}{T_{4}} = \left (\dfrac{v_{4}}{v_{3}}  \right )^{K-1}

T₄ = 2888.89 / 6.25^{0.393} = 1406.5 K

Work done, W = c_v×(T₃ - T₂) - c_v×(T₄ - T₁)

0.718×(2888.89  - 592.984) - 0.718×(1406.5 - 288.706) = 845.88 kJ/kg

The power developed in an Otto cycle = W×Cycle per second

= 845.88 × 2400 / 60  = 33,835.377 kW = 45373.99 ≈ 45374 hP.

8 0
4 years ago
A) For Well A, provide a cross-section sketch that shows (i) ground elevation, (ii) casing height, (iii) depth to
Ad libitum [116K]
Don’t go on that file will give a virus! Sorry just looking out and I don’t know how to comment!
7 0
3 years ago
compressors, the gas is often cooled while being compressed to reduce the power consumed by the compressor. explain how cooling
ASHA 777 [7]

The amount of work done by steady flow devices varies with the particular gas volume. The kinetic energy of gas particles decreases during cooling.

When the gas is subjected to intermediate cooling during compression, the gas specific volume is reduced, which lowers the compressor's power consumption. Compression is less adiabatic and more isothermal because the compressed gas must be cooled between stages since compression produces heat. The system's thermodynamic cycle's cold sink temperature is lowered by cooling the compressor coils. By increasing the temperature difference between the heat source and the cold sink, this improves efficiency.

Learn more about thermodynamics here-

brainly.com/question/1368306

#SPJ4

8 0
1 year ago
Other questions:
  • Write a modular program that finds the equation, area, and circumference of a circle, given the coordinates of the center of the
    11·1 answer
  • Jen is developing the positioning statement for a new line of sunglasses. In a meeting, the marketing team tells Jen that she ha
    9·1 answer
  • Classify the terms as related to a thermal system or mechanical system.
    8·1 answer
  • When wasDisney Cruise Line founded
    5·1 answer
  • The use of zeroes after a decimal point are an indicator of accuracy. a)True b)- False
    7·1 answer
  • I have a question for you guys
    13·2 answers
  • Our aim is to calculate the efficiency of a gas turbine by assuming it operation can be modeled as a Carnot cycle. The kerosene
    9·1 answer
  • Which design activity is part of the design for manufacturability (DFM) methodology?
    10·1 answer
  • What kinds of problems or projects would a mechanical engineer work on?
    11·1 answer
  • The variation of the pressure of a fluid with density at constant temperature is known as the _____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!