1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
6

For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea

sures the magnitude of the heat flux at 3cmr= as 40 W/m2. Assume that the temperature distribution is steady and depends only on the radial coordinate. Under the hypothesis that the thermal conductivity is independent of temperature, what is k if a) the inner and outer radii
Engineering
1 answer:
miskamm [114]3 years ago
7 0

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

You might be interested in
An 80-percent-efficient pump with a power input of 20 hp is pumping water from a lake to a nearby pool at a rate of 1.5 ft3/s th
photoshop1234 [79]

Answer:

mechanical power used to overcome frictional effects in piping is 2.37 hp

Explanation:

given data

efficient pump = 80%

power input = 20 hp

rate = 1.5 ft³/s

free surface = 80 ft

solution

we use mechanical pumping power delivered to water is

{W_{u}}= \eta  {W_{pump}}  .............1

put here value

{W_{u}}  = (0.80)(20)

{W_{u}} = 16 hp

and

now we get change in the total mechanical energy of water is equal to the change in its potential energy

\Delta{E_{mech}} = {m} \Delta pe   ..............2

\Delta {E_{mech}} = {m} g \Delta z  

and that can be express as

\Delta {E_{mech}} = \rho Q g \Delta z     ..................3

so

\Delta {E_{mech}} = (62.4lbm/ft^3)(1.5ft^3/s)(32.2ft/s^2)(80ft)[\frac{1lbf}{32.2lbm\cdot ft/s^2}][\frac{1hp}{550lbf \cdot ft/s}]      ......4

solve it we get

\Delta {E_{mech}} = 13.614 hp

so here

due to frictional effects, mechanical power lost in piping

we get here

{W_{frict}} = {W_{u}}-\Delta {E_{mech}}  

put here value

{W_{frict}} = 16 -13.614

{W_{frict}} = 2.37  hp

so mechanical power used to overcome frictional effects in piping is 2.37 hp

4 0
3 years ago
Careful planning will save time, __________, and energy while ensuring the production of a high quality product.
Svet_ta [14]
Juicers nb 345676 at that rate it will be amazing
5 0
2 years ago
The acceleration (in m/s^2) of a linear slider (undergoing rectilinear motion) within a If the machine can be expressed in terms
Inga [223]

Answer:

47.91 sec

Explanation:

it is given that \alpha =\frac{1}{4v^{2}}

at t=0 velocity =0 ( as it is given that it is starting from rest )

we have to find time at which velocity will be 3.3 \frac{m}{sec^{2}}

we know that \alpha =\frac{dv}{dt}=\frac{1}{4v^{2}}

4v^{2}dv=dt

integrating both side

\frac{4v^{3}}{3}=t+c---------------eqn 1

at t=o it is given that v=0 putting these value in eqn 1 c=0

so \frac{4v^{3}}{3}=t

when v=  3.3 \frac{m}{sec^{2}}

t=\frac{4}{3}\times 3.3^{3}

=47.91 sec

6 0
3 years ago
Explain what a margin of safety is in driving as well as how it can help minimize risk.
Yakvenalex [24]

Answer:

A safety margin is the space left between your vehicle and the next to provide room, time and visibility at every instant

Explanation:

A safety margin is defined as an allowance given between your vehicle and the next vehicle in front to provide enough room, visibility and time to move in a safe manner to prevent the occurrence of an accident at anytime the frontal vehicle suddenly stops or slows down

Safety margins help minimize risks in the following way

1) A common knowledge of safety margins, improves predictability among road users, thereby minimizing the risk traffic accidents caused due to late communication

2) The use of safety margins helps minimize the risk due to a change in driving conditions such as when the road becomes more slippery from being covered with fluid that is being wetted

3) Safety margin can help prevent the occurrence of an accident between vehicles due to failure of a car system, such as a punctured tire or failed breaking system

4) Safety margin helps to protect road users from the introduction of obstacles on the main roads such as ongoing road construction, broken down vehicles, road blockage by vehicles involved in an accident etc

5) Safety margin help protect road users from being involved in an accident due to the loss of driving focus of the driver of the frontal vehicle

6 0
3 years ago
What is 39483048^349374*3948048/3i4u4
Verizon [17]

Answer:

1.  3.81813506×10^2^9

2.  1.71479428×10^6^5

3.  9.38483383×10^2^6

4.  1.150847×10^2^9

Explanation:

Feel free to give brainliest

Have a great day!

3 0
3 years ago
Other questions:
  • Ion 2 23
    10·1 answer
  • You will be observing laminar-turbulent transition for room temperature (about 20°C) water flowing in a 0.602"" ID pipe (Schedul
    8·1 answer
  • When welding stick (SMAW) what is the distance between top of bare end of electrode and base metal?
    7·1 answer
  • Problem 89:A given load is driven by a 480 V six-pole 150 hp three-phase synchronous motor with the following load and motor dat
    11·1 answer
  • The design-bid-build model is prons to abuse because separation of phases facilitates the hiding of corrupt practices.
    7·2 answers
  • Which of the following suggestions would best help alleviate the Gulf of Mexico dead zone?
    13·1 answer
  • How is an orthographic drawing similar to or different from an isometric drawing?
    14·2 answers
  • How do all the cars work to move?
    9·2 answers
  • List five pieces of personal safety equipment which must be in everyday use in the workshop​
    15·1 answer
  • 1. What did observations between 1912 and 1917 show?_____
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!