1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
13

PLEASE HELP ME SOMEONE

Physics
1 answer:
sasho [114]3 years ago
7 0
I think its B or D, most likely D.
You might be interested in
Please help 25 points and brainliest
GREYUIT [131]
No. Terrance cannot move the sled. This is because, the force that he produces is 80*3 Newton’s, which is only 240 Newton’s, but since the sled needs a force of 250 Newton’s, he cannot move the sled (even though the difference is only by 10 Newton’s).
7 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
if a torque of 55.0 N/m is required and the largest force that can be exerted by you is 135 N what is th e length of the lever a
Whitepunk [10]

Answer:

r=0.41m

Explanation:

Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

\tau=r\times F

Due to the definition of cross product, the magnitude of the torque is given by:

\tau=rFsin\theta

Where \theta is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when sin\theta is equal to one, solving for r:

r=\frac{\tau}{F}\\r=\frac{55\frac{N}{m}}{135N}\\r=0.41m

7 0
2 years ago
In February 2004, scientists at Purdue University used a highly sensitive technique to measure the mass of a vaccinia virus (the
OlgaM077 [116]

Answer:

a)   m_v = m_s ((\frac{w_o}{w})² - 1) ,  b)  m_v = 1.07 10⁻¹⁴ g

Explanation:

a) The angular velocity of a simple harmonic motion is

           w² = k / m

where k is the spring constant and m is the mass of the oscillator

let's apply this expression to our case,

silicon only

         w₉² = \frac{K}{m_s}

         k = w₀² m_s

silicon with virus

         w² = \frac{k}{m_s + m_v}

          k = w² (m_v + m_s)

in the two expressions the constant k is the same and q as the one property of the silicon bar, let us equal

           w₀²  m_s = w² (m_v + m_s)

           m_v = (\frac{w_o}{w})²  m_s - m_s

           m_v = m_s ((\frac{w_o}{w})² - 1)

b) let's calculate

          m_v = 2.13 10⁻¹⁶ [(\frac{20.4}{2.85})² - 1)]

          m_v = 1.07 10⁻¹⁴ g

4 0
3 years ago
Which quantity below is a derived quantity?
Reil [10]

By definition, the speed of an object is given by:

v = \frac{dr}{dt}

Where,

dr/dt: derived from the position with respect to time

Therefore, speed has units of length over units of time.

Thus, speed is a derived quantity, since it depends on the value of two other quantities.

Answer:

a derived quantity is:

C. Speed

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which relationship between sample size and sampling error is correct? Question 36 options:
    15·1 answer
  • An isolated system consists of a 1.5 kg mass moving in the presence of the following potential energy function: U open parenthes
    8·1 answer
  • The alkali metals all react vigorously with water. Which alkali metal would react to the greatest extent if you have equal amoun
    10·1 answer
  • Two wagons are pulled with equal force. Wagon A is empty. Wagon B is carrying enough bricks to double the mass of the wagon. How
    5·2 answers
  • What is necessary to designate a position? A. a reference point B. a direction C. fundamental units D. motion E. all of these
    15·1 answer
  • Two cars are travelling in the same direction on a road. The blue car is travelling at 50 m/s in front of the red car, which is
    11·1 answer
  • 5. A helicopter scoops a load of water out of a lake, to dump on a forest fire. The helicopter exerts 6480
    7·1 answer
  • How dose the speed of the sound differ in water, iron, and Helium?
    15·1 answer
  • What voltage would produce a current of 100amps through an aluminum wire assuming that the re sistance of the wire is3.44×10-4 o
    15·1 answer
  • Describe the forces that act on a skydiver before
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!