Answer:
λ = 3.2 x 10⁻⁷ m = 320 nm
Explanation:
The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:
v = fλ
where,
v = c = speed of the electromagnetic waves (UV rays) = speed of light
c = 3 x 10⁸ m/s
f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz
λ = wavelength of the electromagnetic waves (UV rays) = ?
Therefore, substituting the values in the relation, we get:
3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)
λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)
<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>
So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.
Answer:
When argon changes from a gas to a liquid, the forces between the molecules become stronger so the particles become closer together and come into come into contact more often. The particles move at a less faster rate as the have less kinetic energy due to decrease in temperature. When argon changes from a liquid to a solid, the forces become even stronger so the particles are arranged in fixed positions and vibrate around a fixed point as they cannot move past each other
Answer:
Isotopes are the elements having the same atomic number i.e same number of protons which in turn is equal to same number of electrons. Number of protons and electrons are equal as the atom is electrically neutral. So, the only option is A.
I hope it helps you !
Because the number of valence electrons of an element determines the properties and in particular the reactivity of that element.
In fact, elements of the first group (i.e. only one valence electron) have high reactivity, because they can easily give away their valence electron to atoms of other elements forming bonds. On the contrary, elements of the 8th group (noble gases) have their outermost shell completely filled with electrons, so they do not have valence electrons, and they have little or no reactivity at all.
False, applied force is when a person or an object pushes on another object